ASPNET
Web API

Recipes

A Problem-Solution Approach

HANDS-ON EXAMPLES FOR BUILDING
FEATURE-RICH ASP.NET WEB API 2
SOLUTIONS

Filip Wojcieszyn

 Apress-

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AUthOr ... ————————— XXV
About the Technical ReVIEWETcsusessssssssssssssmssssssssmsssssssssssssssssssssssssssnssssssnsnsassnsssnnas Xxvii
Acknowledgments.......cccccuiiissnnmmmnmmmmmmssssssssssnnnnmmsssssssssnssnnneeesssssssssnnnnneessssssssnnnnnnnnnssssssnnn XXiX
INtrodUCtionccoiiimmmssannsssnnmsssnsmsssnnnsssnnssssnnnsssnnnsssannsssanssssannsssannsssannnsssnnsssnnnsnssnnsnssnnnnsnns XXXi
Chapter 1: Web APl in ASP.NETcccouuismmmnmmsssssnmmssssssnmsssssssssssssssssssssssnnssssssssnssssssnnnsssssnnns 1
Chapter 2: ASP.NET Web API OQutside of IIS.......ccccccuummmmmmmnssssnmmmmmmmsmsssssssnssssssssssssssssssnns 33
Chapter 3: ROUNING.....ccccmiiisssmnnmissssnnnmssssssnnmmsssssssnsssssssnsessssnnnnsssssnnnsnssssnnnsnssssnnnnnssssnnnnssssn 57
Chapter 4: Content Negotiation and Media TYPES....cccuscmrrssemrmssansmsssnsssssnsssssnsssssssssssnnsssnns 91
Chapter 5: Configuration and Customization............ccccusseemmnnnsennnnnnssssnmnssssnesssnm. 129
Chapter 6: Embrace HTTP with ASP.NET Web API...........cccccinninemmmmnssssnsmmssssasssnssssasssnnans 171
Chapter 7: Exceptions, Troubleshooting, and Documentingccccusseenssssssnnssnsssssnsnssans 205
Chapter 8: Cross Domain and Push Communicationcccccuummmmmmmsssssnnnnmmssmsssssssssnnns 235
Chapter 9: Dependency Injection...........ccciunissmmmmmmssssnnmmsssssssnmssssssnnssssssssssssssnnssnssssnnnsnssns 269
Chapter 10: Securing an ASP.NET Web APl Service.......cccuseurmsssnsmsssnsmsssssssssnsssssnsssssnnssss 283
Chapter 11: Testing Web APl ServiCes.......ccousmmmmssanmsssanssssanssssansssssnssssanssssansssssnsssssnssss 317
Chapter 12: OData.......ccciurisnmmnmmisssnnmmmisssssmmmsssssnmmsssssssnesssssnsesssssnnnnessssnnnsessssnnnsnssssnnnnnssns 347
L1 . 365

Introduction

Like all of us in this industry, I have been through a ton of programming or framework-centric books in my career as
a developer. Without a doubt, my favorite type has always been a recipe-style book. It might be my low attention span
or simply my urge to solve problems rather than read through abstract discussions, but I really enjoy the no-nonsense,
straight-to-the-point format of such publications.

I started working with Web API back when it was still WCF Web API. I started blogging about it in the early beta
days of the framework, at the beginning of 2012, at which time the name had already changed to ASP.NET Web API.
Since then I have produced almost 100 blog posts on virtually all aspects of working with ASP.NET Web API, written a
fair share of technical articles, been involved in a number of open-source initiatives focused around the framework,
and been a speaker at plenty of events. But most importantly, I have grown to know Web API better than my own
backyard.

I had some really wonderful feedback from readers and the amazing Web API community, so at some point I
started thinking about producing a recipe-style book, as it would feel like a natural extension of the material from
the blog. A number of plans and approaches were drafted and discussed, and things eventually came to fruition last
winter, when this book was officially announced.

It has never been my intention to write an A-Z compendium or reference book about ASP.NET Web API. Instead,
Ireveled in the opportunity to use the problem-solution format of the recipe-style book. In my mind, it makes the
book a much more enjoyable read, as you can cherry-pick the things you are interested in, rather than go through the
entire book in a linear fashion.

You will not find theoretical divagations about architecture or abstract academic discussions about REST in
this book. Instead, I focus on the problems stated in each recipe and how to solve them with ASP.NET Web API.
The book dissects what is going on under the hood in the framework and shows you how to push ASP.NET Web
API to its absolute limits. It is also a framework-centric book; it focuses on how to do things specifically with
ASP.NET Web API 2.

Each of the 103 recipes in the book has dedicated source code illustrating the technique or problem discussed in
the recipe. To make it easier to follow the book in a non-linear fashion, the solutions are not dependent on each other.
Each example is simple, straight to the point, and entirely self-contained. This allows for the important bits to clearly
stand out.

Due to the nature of the format of the book, the space available for each recipe is constrained, and as such, some
of the topics cannot be covered in depth. In those cases, I lay out the basics to help you get started, and then point to
extra resources and further reading.

There were many recipe-style books that helped me in my career, and I sincerely hope that this book will help
you become a better ASP.NET Web API programmer, too. If at least a single recipe helps you avoid some headache
that the framework might have given you before, I will be absolutely thrilled.

xxxi

CHAPTER 1

Web APl in ASP.NET

This chapter discusses using ASP.NET Web API on top of IIS, within the ASP.NET runtime. The recipes covered in this
chapter deal with ASP.NET runtime specifics and, unless noted otherwise, the solutions presented here cannot be
extended onto other Web API hosts.

You will learn how to do the following:

e Use ASP.NET Web API in the same process as ASP.NET MVC or ASP.NET Web Forms
(Recipes 1-1 and 1-2)

e Deal with HTML forms and validation (Recipes 1-3 and 1-6)
e Link between MVC and Web API controllers (Recipe 1-4)
e Use scaffolding to rapidly bootstrap ASP.NET Web API projects (Recipe 1-5)

e Introduce ASP.NET-based CSRF (Cross-Site Request Forgery) protection to your Web API
(Recipe 1-7)

e Work with traditional ASP.NET sessions in ASP.NET Web API (Recipe 1-8)

On the other hand, all of the host-agnostic features of Web API (routing, model binding, content negotiation,
security, exception handling, and many others) are covered in detail in the upcoming chapters.

1-1. Add ASP.NET Web API to an MVC Application

Problem
You would like to integrate ASP.NET Web API into your ASP.NET MVC project.

Solution

ASP.NET Web API used to be automatically bundled in MVC project templates in Visual Studio 2012. Since Visual
Studio 2013, you compose your ASP.NET web application using the new One ASP.NET project wizard, based on
Microsoft’s concept of a unified ASP.NET platform, where you can select the relevant components, such as MVC and
Web API. This is shown in Figure 1-1.

CHAPTER 1 © WEB API IN ASP.NET

New ASP.NET Project - Apress.Recipes.WebApi ?

Select a template:
A project template for creating ASP.NET MVC applications.

p=cy =<y =<3 =< ASP.NET MVC allows you to build applications using the
g_] 9_1 QJ 9—] Model-View-Controller architecture. ASP.NET MVC
Neb F includes many features that enable fast, test-driven
Enpty Vieb forms pve W A development for creating applications that use the latest
= = o) tandards.
e = - s
o el e
Single Page Facebook Windows Learnmare
Application Azure Mobile
Service
Change Authentication
hentication: Individual User A
Add folders and core references for IS T
[[] WebForms 7 MVC [] Web API (%) [] Create remote resources
Web Site
] Add unit tests
Testproject name: | Apress.Recipes.WebApiTests

0K l Cancel
Figure 1-1. The One ASP.NET project wizard, with MVC and Web API in a single project

Interestingly, if you choose the Web API project template, MVC will be automatically bundled into it as well, as
ASP.NET Web API Help Pages rely on MVC to serve content.

You can also add Web API to any existing MVC project by installing it from NuGet.

Install-Package Microsoft.AspNet.WebApi

Semantically, both approaches to including Web API in an ASP.NET web application project are equivalent
because the project wizard simply installs ASP.NET Web API from NuGet too.

How It Works

Under the hood, ASP.NET Web API is built around an asynchronous HTTP handler called System.Web.
IHttpAsyncHandler, which is shown in Listing 1-1. Handlers are the backbone of ASP.NET; they are classes that can
intercept and handle HTTP requests made to the web server and respond to the client with the relevant response.

Listing 1-1. Definiton of IHttpAsyncHandler
public interface IHttpAsyncHandler : object, IHttpHandler

{
System.IAsyncResult BeginProcessRequest(HttpContext context, System.AsyncCallback cb,
object extraData);
void EndProcessRequest(System.IAsyncResult result);

}

CHAPTER 1 © WEB API IN ASP.NET

In fact, this is not much different from the architecture of the ASPNET MVC framework, which also sits on top
of an HTTP handler. As a result, while both frameworks are complex pieces of software engineering, they are not any
more special than regular IHttpHandler or IHttpAsyncHandler implementations that you might have created in the
past to handle your various custom HTTP-based tasks.

The outline of the Web API IHttpAsyncHandler HttpControllerHandler and its public members is shown
in Listing 1-2.

Listing 1-2. Public Members of HttpControllerHandler

public class HttpControllerHandler : HttpTaskAsyncHandler

{
public HttpControllerHandler(RouteData routeData);
public HttpControllerHandler(RouteData routeData, HttpMessageHandler handler);
public override Task ProcessRequestAsync(HttpContext context);

}

The main difference between MVC and Web API is that since version 2 of the framework, the Web API handler,
HttpControllerHandler, is a subclass of HttpTaskAsyncHandler, while the MVC version, MvcHandler, implements
IHttpAsyncHandler directly. HttpTaskAsyncHandler is .NET 4.5 only, which is the only .NET version supported by
Web API 2.

When you run both MVC and Web API in the same ASP.NET process, ASP.NET will use the HttpApplication.
MapRequestHandler event to determine which of the HTTP handlers will be selected to handle the incoming request.
At this stage, route matching happens, and the request flows through the IRouteHandler relevant for the selected
route. The sole purpose of IRouteHandler is to produce an IHttpHandler that can handle the request.

If the IRouteHandler is HttpControllerRouteHandler (Web API route), then the Web API path will be chosen
and the request will end up in the HttpControllerHandler. Conversely, if the route handler is MvcRouteHandler,
then the MVC path takes over via MvcHandler.

The Code

With the setup showed in this recipe, ASPNET MVC and ASP.NET Web API will run in the same process so they can
easily share state, such as static objects or Global.asax events. Additionally, the web.config is common for both
frameworks.

Listing 1-3 shows two controllers, an MVC controller and a Web API controller, which can coexist side by side in
a single ASP.NET web application. Notice that since they are located in different namespaces, they can even have the
same name. Moreover, it’s perfectly fine for them to share the same model (DTO) when necessary.

Listing 1-3. Sample MVC and Web API Controllers

public class Book

{
public int Id { get; set; }
public string Author { get; set; }
public string Title { get; set; }
public string Link { get; set; }
}

CHAPTER 1 © WEB API IN ASP.NET

namespace Apress.Recipes.WebApi.Controllers.Mvc

public class BooksController : Controller

{
public ActionResult Details(int id)
{
var book = Books.List.FirstOrDefault(x => x.Id == id);
if(book == null) return new HttpNotFoundResult();
return View(book);
}
}

}

namespace Apress.Recipes.WebApi.Controllers.WebApi

public class BooksController : ApiController

{
public Book GetById(int id)
{
var book = Books.List.FirstOrDefault(x => x.Id == id);
if (book == null) throw new HttpResponseException(HttpStatusCode.NotFound);
return book;
}
}

The key to avoiding conflict between the frameworks is a careful route setup; to facilitate that, by default
ASP.NET Web API will occupy URI space under /api, while all of the other root-level URLs will be handled by MVC.
Typically Web API routes are defined in the WebApiConfig static class against the HttpConfiguration object and its
Route property, while MVC routes are defined in the static RouteConfig class, directly against the
System.Web.RouteCollection. The default route definitions for both frameworks are shown in Listing 1-4.

Listing 1-4. Default Routing for Web API and MVC

//Web API routing configuration
public static class WebApiConfig

{
public static void Register(HttpConfiguration config)

{

// Web API configuration and services

// Web API routes
config.MapHttpAttributeRoutes();

CHAPTER 1 © WEB API IN ASP.NET

config.Routes.MapHttpRoute(
name: “"DefaultApi”,
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional }

)s
}

//MVC routing configuration
public class RouteConfig

{
public static void RegisterRoutes(RouteCollection routes)
{
routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
routes.MapRoute(
name: "Default",
url: "{controller}/{action}/{id}",
defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional }
)5
}
}

Chapter 3 is dedicated to routing, but with the setup from Listing 1-4, the following endpoints are now exposed
by your ASP.NET application:

e /api/books/{id} will route to ASP.NET Web API
e /books/details/{id} will route to ASP.NET MVC

1-2. Add ASP.NET Web API to a Web Forms Application

Problem
You would like to integrate ASP.NET Web API into your ASP.NET Web Forms application.

Solution

For new Web Forms projects, in Visual Studio 2013, you can simply choose to include ASP.NET Web API in the new
One ASP.NET project wizard, as shown in Figure 1-2.

CHAPTER 1 © WEB API IN ASP.NET

New ASP.NET Project - Apress.Recipes.WebApi ? ﬂ

Select a template:

A project template for creating ASP.NET Web Forms

=3 =<3 =3 =<3 applications. ASP.NET Web Forms lets you build dynamic
9—] @—] @—] @—] websites using a familiar drag-and-drop, event-driven
E Web F MVC Web API model, A design surface_and h;lmdfedslofl controls and
e O e components let you rapidly build sophisticated, powerful
Ul-driven sites with data access.
] i =
e e e
Single Page Facebook Windows Leawn more
Application Azure Mcbile
Service
Change Authentication
Authentication: Individual User Accounts
Add folders and core references for: =5 Windows Azure
< WebForms []MVC [Z] Web API @ [] Create remote resources
. Web Site v
[Add unit tests
Test project name: Apress.Recipes.\ Manage Subscriptions

oK | Cancel

Figure 1-2. ASP.NET project wizard, with Web Forms and Web API hosted side by side

Since ASP.NET Web API is available on NuGet, it can also easily be added to an existing Web Forms solution:
Install-Package Microsoft.AspNet.WebApi

The same applies to using Visual Studio 2012; you can just create a new Web Forms project, and throw in Web
API through NuGet.

How It Works

Similarly to using ASP.NET Web API alongside MVC, adding it to a Web Forms project results in Web API running in
the same ASP.NET process as the Web Forms application.
Installing the Microsoft.AspNet.WebApi NuGet package into your ASP.NET project will add a WebApiConfig static
class to the App_Start folder. It is used for configuring ASP.NET Web API and declaring ASP.NET Web API routes.
Additionally, the following line, invoking the Web API configuration, gets added to the Application_Start block
of the Global.asax:

GlobalConfiguration.Configure(WebApiConfig.Register);

Running Web API inside a Web Forms application is no different than running it inside an MVC application;
each request will still be handled by a relevant IHttpHandler. This could either be the Web API-specific
HttpControllerHandler, or a Web Forms-supplied handler. Web Forms map the ASPX extension to

6

CHAPTER 1 © WEB API IN ASP.NET

PageHandlerFactory, which in turn produces the relevant IHttpHandler to handle the HTTP request. The default
building block of a Web Forms application, a System.Web.UI.Page class, is indeed an IHttpHandler too, and that’s
how it’s capable of acting as request processor.

The engine and architecture behind ASP.NET Web API is discussed in detail in Recipe 1-1.

The Code

Listing 1-5 shows a sample model class plus an ApiController and a Web Forms Page class sharing it to present the data.

Listing 1-5. Sample Model, Web Forms Page, and a Web API Controller

public class Book

{
public int Id { get; set; }
public string Author { get; set; }
public string Title { get; set; }
}
public partial class Default : Page
{
protected void Page Load(object sender, EventArgs e)
{
int id;
if (Int32.TryParse((string)Page.RouteData.Values["id"], out id))
var book = Books.list.FirstOrDefault(x => x.Id == id);
if (book == null)
{
Response.StatusCode = 404;
return;
}
1t1Author.Text = book.Author;
1t1Title.Text = book.Title;
hplLink.NavigateUrl = "/api/books/" + book.Id;
}
Response.StatusCode = 404;
}
}
public class BooksController : ApiController
{
public Book GetById(int id)
{
var book = Books.List.FirstOrDefault(x => x.Id == id);
if (book == null) throw new HttpResponseException(HttpStatusCode.NotFound);
return book;
}
}

CHAPTER 1 © WEB API IN ASP.NET

It is a convention to place ApiControllers inside a Controller folder in your solution, but it is by no means a
requirement; any public implementation of IHttpController available in the current AppDomain, as long as it uses a
Controller suffix in the name, is going to be discovered at runtime and deemed suitable to handle HTTP requests.

As is the case with running Web API and MVC side by side, when using Web Forms routing, you have to be careful
not to cause conflicts between routes intended to be handled by Web API and those intended to be leading to ASPX
pages. Listing 1-6 shows a sample routing setup for both Web Forms and Web API. ASP.NET Web API routing is done
in this case in the static WebApiConfig class, while Web Forms routing is configured in the static RouteConfig.

Listing 1-6. Web API Routing and Web Forms Routing, Side by Side

public static class RouteConfig

{

public static void RegisterRoutes(RouteCollection routes)
{
var settings = new FriendlyUrlSettings();
settings.AutoRedirectMode = RedirectMode.Permanent;
routes.EnableFriendlyUrls(settings);

routes.MapPageRoute(
"book-route",
"book/{id}",
"~/default.aspx");

}

public static class WebApiConfig
{

public static void Register(HttpConfiguration config)
{

// Web API configuration and services

// Web API routes
config.MapHttpAttributeRoutes();

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional }

);

CHAPTER 1 © WEB API IN ASP.NET

1-3. Accept an HTML Form
Problem

You would like to create an ASP.NET Web API endpoint that’s capable of handling HTML forms (data posted as
application/x-www-form-urlencoded).

Solution

You can create a controller action that accepts a model that’s structured like the HTML form you are going to handle,
and rely on ASP.NET Web API to perform the model binding for you. The properties on the model must match the
names of the keys used in the HTTP request.

public HttpResponseMessage Post(RegistrationModel model)
{

}

//omitted for brevity

Alternatively, you can use System.Net.Http.Formatting.FormDataCollection as the only parameter on the
action; the framework will then pass the form data as a key-value collection, allowing you to manually handle the
form exactly how you’'d want to.

public HttpResponseMessage Post(FormDataCollection form)

{

//omitted for brevity
}
How It Works

Submitting form-URL-encoded data is a common requirement when building web applications with ASPNET Web
AP], or, even more so, when you are using Web API to facilitate your existing web application (MVC, Web Forms,
or any other technology).

ASP.NET Web API uses MediaTypeFormatters to extract data from the body of HttpRequestMessage and pass
it to the relevant action selected to handle the request. Chapter 4 is dedicated to model binding and working with
formatters, so here I will only touch on the concepts directly related to handling HTML forms.

Two of the out-of-the-box formatters are capable of handling forms: FormUrlEncodedMediaTypeFormatter,
used for binding FormDataCollection on requests with application/x-www-form-urlencoded content type, and
JQueryMvcFormUrlEncodedFormatter, also used for the same content type, but also capable of binding to models
(DTOs). From a design perspective, the latter subclasses the former.

Using FormDataCollection, instead of a model, as your action parameter will not only give you access to the
raw form, but also instruct ASP.NET Web API to not perform any validation. Other special Types excluded from
input validation are System.Xml.XmlNode, Newtonsoft.Json.Ling.JToken, System.Xml.Linq.X0bject,
System.Type, and byte[].

By default, Web API reads the body of the request only once, so when using a model to bind to form data, that
model should encapsulate all of the form fields. In other words, out of the box, it is not possible to pass some of the
fields as part of the request body and some in the URL, and expect the framework to try to automatically reconcile them
into a single model. This is a dangerous spot for MVC developers because that’s exactly the behavior they are used to.
It is, however, possible to force Web API into such MVC-style parameter binding; this is discussed in Recipe 4-4.

If your form handles binary data, such as uploading files, then the form will be submitted as multipart/form-
data instead. ASP.NET Web API does not provide any built-in MediaTypeFormatter to handle that; however, it is still

CHAPTER 1 © WEB API IN ASP.NET

relatively easy to work with forms submitted that way. This is done by using the MultipartFormDataStreamProvider
directly against the contents of the HttpRequestMessage. The technique is shown in Listing 1-7. Dealing with file
uploads is beyond the scope of this recipe, though; it is separately discussed in Recipe 4-11.

Listing 1-7. Accessing Form Data of a Multipart Request

public async Task Post()

{
if (!Request.Content.IsMimeMultipartContent())

throw new HttpResponseException(Request.CreateResponse(HttpStatusCode.NotAcceptable,
"This request is not properly formatted"));

}

var streamProvider = new MultipartFormDataStreamProvider("d:/uploads/");
await Request.Content.ReadAsMultipartAsync(streamProvider);

//here you can access streamProvider.FormData which
//is an instance of FormDataCollection

Note The functionality discussed in this recipe is not ASP.NET-specific and can be used beyond web-hosted Web
APIs. However, you usually have to deal with traditional HTML forms when running Web API as part of an ASP.NET web
application.

The Code

Listing 1-8 shows a simple HTML form that can be submitted to an ASP.NET Web API endpoint, both as a regular form
and from JavaScript.

Listing 1-8. A Sample HTML Form

<form role="form" method="post" action="/api/form" enctype="application/x-www-form-urlencoded">
<div class="form-group">
<label for="name">Name</label>
<input type="text" class="form-control" name="name" placeholder="Enter name">
</div>
<div class="form-group">
<label for="email">Email</label>
<input type="email" class="form-control" name="email" placeholder="Enter email">
</div>
<div class="radio">
<label>
<input type="radio" name="gender" value="female" checked>
Female
</label>
</div>

10

CHAPTER 1

<div class="radio">
<label>
<input type="radio" name="gender" value="male">
Male
</label>
</div>
<button type="submit" class="btn btn-default">Submit</button>
<button id="post]S" class="btn btn-default">Send with JS</button>
</form>

<script type="text/javascript">
$(function () {
$("#postIS").on("click", function () {
var data = {
name: $("input[name="name']").val(),
email: $("input[name="email']").val(),
gender: $("input[name="'gender']:checked").val(),

};

$.ajax({
data: data,
datatype: "html",
type: "POST",

url: "/api/user"
}).done(function (res) {

//success handler
D;

};
};

</script>

WEB API IN ASP.NET

Listing 1-9 shows two ASP.NET Web API actions that are capable of handling the form from Listing 1-8. The first
one does it in a more traditional way, using FormDataCollection and manual data extraction, which is then used to
populate a server side model. The second one relies on the framework to hydrate the model automatically.

Listing 1-9. Web API Controllers Handling the Form Data

public class UserModel

{
public string Name { get; set; }
public string Email { get; set; }
public string Gender { get; set; }
}

public class FormController : ApiController

{
public HttpResponseMessage Post(FormDataCollection form)

{

var user = new UserModel

{

Email = form["Email"],

11

CHAPTER 1 © WEB API IN ASP.NET

Name = form[“Name"],
Gender = form["Gender"]

};

//process user...
//rest omitted for brevity

}
}
public class UserController : ApiController
{
public HttpResponseMessage Post(UserModel user)
{
//process user...
//rest omitted for brevity
}
}
1-4. Link from MVC Controller to APl Controller and Vice Versa
Problem

You would like to create direct links from ASP.NET MVC controllers to ASP.NET Web API controllers and the other
way round.

Solution

You can create links to controllers using an instance of System.Web.Http.Routing.UrlHelper, exposed on the
base ApiController (as the Url property), as well as on the RequestContext, which is attached to an instance of
HttpRequestMessage. To achieve this, you need to call the Link or Route method and pass in the name of the MVC
route and the route defaults (controller name, action name, and relevant action parameters).

On the MVC controller side, System.Web.Mvc.UrlHelper, hanging off the base MVC base Controller class, is
able to generate Web API links via the HttpRouteUr1l method.

How It Works

It is a common requirement, when using ASP.NET Web API as part of an existing MVC application, to be able to cross
link between the two types of controllers. When creating links to MVC controllers from Web API, you actually use the
exact same methods as when creating links between Web API controllers: Link or Route on the UrlHelper. The reason
why this is possible is that ASP.NET Web API will find the route by name, and then call the GetVirtualPath on that
route to resolve a link to it. If the route happens to be registered as an MVC route, it will be of type System.Web.Route
and its particular implementation of GetVirtualPath will be used. It’s important to remember that the Link method
will generate an absolute link, while the Route method will generate a relative one.

In the opposite direction, when linking from MVC to Web AP]J, the HttpRouteUrl method is not an extension method
introduced by the ASP.NET Web API assemblies, but rather a class member of UrlHelper, inside the System.Web.Mvc
DLL. This helper uses a private constant called httproute, which is added to the RouteValueDictionary every time
you use HttpRouteUrl. This way, a route can be identified as pointing to ASP.NET Web APL

Note Recipe 3-12 is dedicated to further exploring and understanding the engine behind generating links to routes.

12

CHAPTER 1 © WEB API IN ASP.NET

The Code

Imagine a sample web application dealing with books. Listing 1-10 shows a sample Book model, an in-memory
representation of a repository of books and the API/MVC routing configuration. For demo purposes, it is fine to use
the same model for both MVC and Web API endpoints. You'll use the artefacts declared in this listing to illustrate the
cross-linking between Web API and MVC controllers.

Listing 1-10. An Example Model, Routing and In-Memory Repository

public class Book

int Id { get; set; }

string Author { get; set; }
string Title { get; set; }
string Link { get; set; }

public static class Books

static List<Book> List = new List<Book>

new Book {Id = 1, Author = "John Robb", Title = "Punk Rock: An Oral History"},

new Book {Id = 2, Author

"Daniel Mohl", Title = "Building Web, Cloud, and Mobile Solutions

with F#"},

new Book {Id = 3, Author = "Steve Clarke", Title = "100 Things Blue Jays Fans Should Know
& Do Before They Die"},

new Book {Id = 4, Author = "Mark Frank", Title = "Cuban Revelations: Behind the Scenes in
Havana "}

public class RouteConfig

static void RegisterRoutes(RouteCollection routes)

routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

routes.MapRoute(

{
public
public
public
public

}

{
public
{
};

}

{
public
{

)

}

}

name: "BookPage",
url: "books/details/{id}",
defaults: new { controller = "BooksPage", action = "Details" }

13

CHAPTER 1 © WEB API IN ASP.NET

public static class WebApiConfig

{
public static void Register(HttpConfiguration config)
{
config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "api/{controller}/{id}",
defaults: new {id = RouteParameter.Optional}
)5
}
}

The code responsible for creating the link to ApiController from MVC controller is shown in Listing 1-11.
BooksPageController is the MVC controller responsible for dealing with books. To generate the link, you call a Link
method on the UrlHelper, and pass in the relevant route defaults.

Listing 1-11. ASP.NET Web API ApiController Linking to MVC Controller

public class BooksController : ApiController

{
public Book GetById(int id)
{
var book = Books.List.FirstOrDefault(x => x.Id == id);
if (book == null) throw new HttpResponseException(HttpStatusCode.NotFound);
book.Link = Url.Link("BookPage", new {controller = "BooksPage", action = "Details”, id = id });
return book;
}
}

Alink in the opposite direction, from ApiController to MVC controller, can be seen in Listing 1-12. In this case,
an MVC-specific UrlHelper is used with the HttpRouteUr] extension method.

Listing 1-12. Linking to ASP.NET Web API from an MVC Controller

public class BooksPageController : Controller

{
public ActionResult Details(int id)
{
var book = Books.List.FirstOrDefault(x => x.Id == id);
if(book == null) return new HttpNotFoundResult();
book.Link = Url.HttpRouteUrl("DefaultApi"”, new { controller = "Books", id = id });
return View(book);
}
}

14

CHAPTER 1 © WEB API IN ASP.NET

1-5. Use Scaffolding with ASP.NET Web API

Problem
You'd like to rapidly bootstrap an ASP.NET Web API solution.

Solution

ASP.NET Scaffolding has supported ASP.NET Web API from the very beginning. To use scaffolding to add Web API
controllers to your project, right-click the Controllers folder in your solution, and choose Add » New Scaffold Item.
From there, out of the box, you can select one of the following:

e Web API 2 Controller

e Web API 2 Controller with actions, using Entity Framework

e Web API 2 Controller with read/write actions

e Web API 2 OData Controller with actions, using Entity Framework

Additionally, scaffolding templates with attribute routing can be downloaded from NuGet:

Install-Package Microsoft.AspNet.WebApi.ScaffolderTemplates.AttributeRouting.CSharp

How It Works

The proper, full name for the scaffolding functionality is ASP.NET Scaffolding, and it is a T4-based code generation
framework for ASP.NET. T4, a Text Template Transformation Toolkit, is a template-based code generator that has been
part of Visual Studio since version 2005.

Visual Studio 2013 introduced support for the excellent Scaffolded Items feature, allowing you to quickly generate
bootstrapping code for your ASP.NET applications. With Visual Studio 2013 Update 2, some terrific extensibility points
have been added, introducing the possibility for template customizations, giving you the ultimate flexibility when it
comes to code generation.

The built-in scaffolding templates are installed in your Visual Studio installation folder, and can be customized
from there. For example, if you use the standard Program Files folder, that would be C:\Program Files (x86)\
Microsoft Visual Studio 12.0\Common7\IDE\Extensions\Microsoft\Web\Mvc\Scaffolding\Templates.Ifyou
modified any of the templates there, the changes will obviously have a global effect. If you would like to customize the
templates on a per project basis, there are two ways to do so:

e Install SideWaffle (sidewaffle.com), a Visual Studio extension dedicated to template
management. Then use the regular “add” dialog, and choose Web » SideWaffle » ASP.NET
Scaffolding T4. This will create a new CodeTemplates folder in your solution, containing the copies
of all of the global scaffolding templates, which you can edit there to suit your solution’s needs.

e Copy all of the files from the global scaffolding templates folder to your ASP.NET project
manually, into a top-level folder named CodeTemplates (name is important). This copies both
C# and VB.NET templates, but you can get rid of the ones you don’t need by hand. Make sure
to include the files into your project.

The Code

Let’s walk through a basic scaffolding process for a Web API controller with Entity Framework Code First model.
The model is shown in Listing 1-13.

15

CHAPTER 1 © WEB API IN ASP.NET

Listing 1-13. A Sample EF Code First Model

public class Team

{
public int Id { get; set; }
public string Name { get; set; }
public DateTime FoundingDate { get; set; }
public string LeagueName { get; set; }
}

After adding the model, you need to rebuild your project before you can proceed to the scaffolding dialog; EF
would rely on reflection on your web application DLL. Afterwards, you can proceed to the Add » Scaffolded Item »
Web API » Web API 2 Controller with actions, using Entity Framework. The dialog is shown in Figure 1-3.

Add Scaffold
4 Installed
a C[ur;‘r::n Web API 2 Controller - Empty :\l'ehlz_ﬂPl Zflt:ontroller—Empty
s y Microso!
2000

Web API 2 Controller with actions, using Entity Framework An empty Web API controller.

Web API 2 Controller with read/write actions Id: ApiControllerEmptyScaffolder

Web API 2 OData Controller with actions, using Entity
Framework

Web API 2 OData Controller with read/write actions

A s

Click here to go online and find more scaffolding extensions.

ndd Cancel
Figure 1-3. Add scaffolded item dialog

You then proceed to the dialog shown in Figure 1-4, where you must choose your model, through its fully
qualified name (there is a dropdown available, listing all the classes in your solution), an Entity Framework
DataContext (a dropdown will list available contexts, if any exist, or you can create one directly from there), also
with a fully qualified name, and the desired name of your controller. You can check the Use async controller actions
checkbox to force the scaffolding engine into generating asynchronous actions and using asynchronous methods
against the EF DataContext.

16

CHAPTER 1 © WEB API IN ASP.NET

Add Controller

Model class: Team (Apress.Recipes.WebApi.Models) b

Data context class: | Apress.Recipes.WebApi.Models.ApressRecipesWebApiContexdt M-

[+] Use async controller actions

Controller name: TeamsController

| Add ‘ l Cancel
Figure 1-4. Second step of creating a controller through scaffolding

The generated controller (stripped of namespaces to save on space) is shown in Listing 1-14. It is a perfectly
usable HTTP endpoint, which will be picked up by the default centralized routing. The create action (POST) will
respond to the client with the 201 status code, and include a link to the newly created resource in the Location
header (thanks to using the CreatedAtRoute method). The update action (PUT) even handles a potential
DbUpdateConcurrencyException

Listing 1-14. A Web API Controller with EF Actions, Generated Through Scaffolding

public class TeamsController : ApiController

{

private ApressRecipesWebApiContext db = new ApressRecipesWebApiContext();

// GET: api/Teams
public IQueryable<Team> GetTeams()

{
}

// GET: api/Teams/5
[ResponseType(typeof(Team))]
public async Task<IHttpActionResult> GetTeam(int id)

return db.Teams;

{
Team team = await db.Teams.FindAsync(id);
if (team == null)
{
return NotFound();
}
return Ok(team);
}

17

CHAPTER 1 © WEB API IN ASP.NET

18

// PUT: api/Teams/5
[ResponseType(typeof(void))]
public async Task<IHttpActionResult> PutTeam(int id, Team team)

{
if (!ModelState.IsValid)

{

return BadRequest(ModelState);
}
if (id !'= team.Id)
{

return BadRequest();
}
db.Entry(team).State = EntityState.Modified;
try
{

await db.SaveChangesAsync();
}
catch (DbUpdateConcurrencyException)
{

if (!TeamExists(id))

{

return NotFound();

}

else

{

throw;

}

}

return StatusCode(HttpStatusCode.NoContent);
}

// POST: api/Teams
[ResponseType(typeof(Team))]
public async Task<IHttpActionResult> PostTeam(Team team)

{
if (!ModelState.IsValid)

{
}

db.Teams.Add(team);
await db.SaveChangesAsync();

return BadRequest(ModelState);

return CreatedAtRoute("DefaultApi”, new { id = team.Id }, team);

CHAPTER 1 © WEB API IN ASP.NET

// DELETE: api/Teams/5
[ResponseType(typeof(Team))]
public async Task<IHttpActionResult> DeleteTeam(int id)

{

Team team = await db.Teams.FindAsync(id);

if (team == null)

return NotFound();

}

db.Teams.Remove(team);

await db.SaveChangesAsync();

return Ok(team);
}
protected override void Dispose(bool disposing)
{

if (disposing)

{

db.Dispose();

}

base.Dispose(disposing);
}
private bool TeamExists(int id)
{

return db.Teams.Count(e => e.Id == id) > 0;
}

Now, suppose that you have added scaffolding templates to your solution in one of the ways described in the
“How It Works” section. You may now proceed to customizing them however you wish. An example of forcing all new
ASP.NET Web API controller classes to inherit from a specific base class is shown in Listing 1-15. You'll modify the
Controller.cs.t4 from the CodeTemplates/ApiControllerEmpty folder to ensure that each new controller does not
inherit from ApiController, but instead subclass ApiBaseController, which is a fairly typical requirement in larger
projects, as lots of Web API developers like to introduce their own base class for controllers.

Listing 1-15. Forcing a Web API Controller Created Through Scaffolding Templates to Always Inherit from
ApiBaseController

<#@ template language="C#" HostSpecific="True" #>

<#@ output extension="cs" #>

<#@ parameter type="System.String" name="ControllerName" #>
<#@ parameter type="System.String" name="Namespace" #>
using System;

using System.Collections.Generic;

using System.Ling;

using System.Net;

using System.Net.Http;

using System.Web.Http;

19

CHAPTER 1 © WEB API IN ASP.NET

namespace <#= Namespace #>

{
public class <#= ControllerName #> : ApiBaseController
{
}

}

If you now go to Add » Scaffolded Item » Web API » Web API 2 Controller Empty, the generated code will look
as shown in Listing 1-16, inheriting from ApiBaseController instead of ApiController.

Listing 1-16. A Controller Generated from the Customized Scaffolding Template

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Net.Http;

using System.Web.Http;

namespace Apress.Recipes.WebApi.Controllers

public class SampleController : ApiBaseController

{
}

You could use this technique to introduce a wide array of customizations, including custom namespaces,
injecting your own services, or forcing the actions to be asynchronous.

Tip Instead of merely modifying the existing ones, you can also create new, completely independent scaffolding
templates. You can learn more at the official .NET Web Development and Tools group blog at
http://blogs.msdn.com/b/webdev/archive/2014/04/03/creating-a-custom-scaffolder-for-visual-studio.aspx.

1-6. Add Model Validation
Problem

You would like ASP.NET Web API to perform validation against your models, and share some validation logic with
ASP.NET MVC.

Solution

ASP.NET Web API supports the same validation mechanism as ASP.NET MVC: validation through attributes from
System.ComponentModel.DataAnnotations. It’s enough to just decorate your models with relevant validation
attributes, and the framework will respect them.

20

http://blogs.msdn.com/b/webdev/archive/2014/04/03/creating-a-custom-scaffolder-for-visual-studio.aspx

CHAPTER 1 © WEB API IN ASP.NET

For fine grained validation, you may choose to implement IValidatableObject (from System.ComponentModel.
DataAnnotations) on your model. If all validation attributes successfully pass, ASP.NET Web API will then invoke the
Validate method of that interface, allowing you to further inspect the entity. This is the same behavior as in MVC, and
you can even use the same DTOs for both Web API and MVC.

A variation of this approach is to use a third-party library called FluentValidation (FluentValidation on
NuGet) for building powerful validation scenarios. In this case, you would still implement IValidatableObject on
your models, except it would need to rely on FluentValidation validators, rather than having the validation logic
embedded. Those validators can also be shared between Web API and MVC.

Tip The validation behavior of ASP.NET Web API is the same across different hosts.

How It Works

In order to perform validation of models that are read from the body of HTTP requests, ASP.NET Web API relies on
an IBodyModelValidator service. The outline of that interface is shown in Listing 1-17, and while it’s a replaceable
service, normally it’s enough for you to use the default implementation, DefaultBodyModelValidator, which is
enabled in HttpConfiguration automatically.

Listing 1-17. Definition of IBodyModelValidator

public interface IBodyModelValidator

{
bool Validate(object model, Type type, ModelMetadataProvider metadataProvider,
HttpActionContext actionContext, string keyPrefix);

The Validate method on the DefaultBodyModelValidator is invoked when a service called
FormatterParameterBinding performs the binding of the body of the HTTP request to the parameter on the
action that’s handling the request. It recursively validates the entire object graph, validating each property
and nested property against a relevant validation provider. For data annotation support, Web API uses
DataAnnotationsModelValidatorProvider. If your model is annotated with WCF-style DataMemberAttributes, then
the framework uses DataMemberModelValidatorProvider instead.

Finally, your model may implement IValidatableObject, a validation interface that exposes a single method,
as shown in Listing 1-18. In this case, the model itself is providing additional validation logic. ASP.NET Web API will
invoke that Validate method on an IValidatableObject, aslong as all other validations (attribute based) pass.

Listing 1-18. Definition of the IValidatableObject

public interface IValidatableObject
{

IEnumerable<ValidationResult> Validate(ValidationContext validationContext);

}

The validation result is represented in ASP.NET Web API by ModelStateDictionary, which is available as
the ModelState property on the base ApiController. This is the exact same concept as in ASP.NET MVC, but the
object is different because Web API uses its own version from the System.Web.Http.ModelBinding namespace.
ModelStateDictionary exposes the IsValid property, which can be checked to determine the status of the model
from inside of an action.

Data annotations as a validation mechanism are also integrated really well into the ASP.NET Web API Help Page,
where they provide a semantic description of your API endpoint. That will be discussed in detail in Recipe 7-11.

21

CHAPTER 1 © WEB API IN ASP.NET

Tip Itis a good practice to use a different model for requests to your API to that which you use for the responses.
For example, an entity ID is typically needed only on the response model, as in the request can be read from the URI if
needed.

The Code

Listing 1-19 shows a model with several annotations: RequiredAttribute, MaxLengthAttribute, and
RangeAttribute. You are then able to use ModelState to check the state of the validation inside of the controller,
and issue the appropriate response to the client.

Listing 1-19. A Sample Web API Model

public class Album

{
public int Id { get; set; }
[Required(ErrorMessage = "Artist is required")]
[MaxLength(30)]
public string Artist { get; set; }
[Required(ErrorMessage = "Title is required")]
[MaxLength(40)]
public string Title { get; set; }
[Range(0, 10, ExrorMessage = "Rating in the range of 0-10 is required.")]
public int Rating { get; set; }
}
public class AlbumController : ApiController
{
public HttpResponseMessage Post(Album album)
if (!ModelState.IsValid)
{
throw new HttpResponseException(Request.CreateErrorResponse(HttpStatusCode.BadRequest,
ModelState));
}
//omitted for brevity
}
}

The code responsible for dealing with ModelState, and in general with validation verification, can easily be
extracted from the controller into a common, reusable filter; this will be discussed further in Recipe 5-4.

Now, consider the following scenario. What if you'd like to introduce an extra property on the model, called
Starred, and extend the validation of the model so that at least one of the two (Rating or Starred) is required?
While this type of entanglement between two properties is difficult to express with data annotations, it is where
IvalidateableObject can help. You can use the Validate method of the interface to inspect the state of the entire
model and return the relevant ValidationResult based on that. The modified example is shown in Listing 1-20.

22

CHAPTER 1 © WEB API IN ASP.NET

Listing 1-20. A Modified ASP.NET Web API Validation, Relying on IValidateableObject

public class Album : IValidatableObject

{
public int Id { get; set; }

[Required(ErrorMessage = "Artist is required")]
[MaxLength(30)]
public string Artist { get; set; }

[Required(ErrorMessage = "Title is required")]
[MaxLength(40)]
public string Title { get; set; }

public int? Rating { get; set; }
public bool? Starred { get; set; }

public IEnumerable<ValidationResulty Validate(ValidationContext validationContext)

{
if (!(Rating.HasValue &% Rating » 0 &% Rating < 10) || (Starred.HasValue && Starred.Value))

yield return new ValidationResult("You must set either the Rating in the 0-9 range or
Starred flag.");

Asyou can see, you are free to combine the data annotations with custom logic from within the Validate
method. In this particular example, if your request does not contain either of the two properties that are tied together
(Rating or Starred), you can expect the validation to fail and the result to be as shown in Listing 1-21.

Listing 1-21. A Sample Invalid Request and a Response from Validation Performed via IValidateableObject

POST /api/album HTTP 1.1
Content-Type: application/json
{"artist":"Rancid", "title":"And Out Come The Wolves"}

Status Code: 400 Bad Request

Content-Length: 130

Content-Type: application/json; charset=utf-8
Date: Tue, 13 May 2014 19:06:31 GMT

{
"Message": "The request is invalid.",
"ModelState": {
"album": [
"You must set either the Rating in the 0-9 range or Starred flag."
]
}
}

23

CHAPTER 1 © WEB API IN ASP.NET

You can take validation a step further and introduce FluentValidation support to your Web API service.
To get started, install FluentValidation from NuGet.

Install-package FluentValidation

Instead of embedding the validation logic into the entity itself, like you initially did, you'll just make it reference
a FluentValidation validator, and invoke it within the Validate method. This way, all the validation logic can be
externalized; as a result, you can not only move out the former logic contained in the Validate method, but also get
rid of the DataAnnotations attributes. The previous example modified to work with FluentValidation is shown in
Listing 1-22.

Listing 1-22. FluentValidation Validator Incorporated into IValidateableObject

public class TrackValidator : AbstractValidator<Track>

{
public TrackValidator()
{
RuleFor(track => track.Artist).Length(0, 30).WithMessage("Artist is required");
RuleFor(track => track.Artist).Length(0, 40).WithMessage("Title is required");
RuleFor(track => track.Starred).NotNull().Equal(x => true).Unless(track => track.Rating.
HasValue 8& track.Rating > 0 && track.Rating < 10);
RuleFor(track => track.Rating).NotNull().GreaterThan(0).LessThan(10).Unless(track => track.
Starred.HasValue 88 track.Starred.Value);
}
}
public class Track : IValidatableObject
{
public int Id { get; set; }
public string Artist { get; set; }
public string Title { get; set; }
public int? Rating { get; set; }
public bool? Starred { get; set; }
public IEnumerable<ValidationResult> Validate(ValidationContext validationContext)
{
var validator = new TrackValidator();
var result = validator.Validate(this);
return result.Errors.Select(item =» new ValidationResult(item.ErrorMessage, new|[]
{ item.PropertyName }));
}
}

In terms of functionality, the above example is equivalent to that from Listing 1-20; FluentValidation rules have
been configured on a relevant validator to correspond to the behavior provided earlier by data annotations, while the
presence of the IValidateableObject interface ensures that this particular validator is getting invoked.

24

CHAPTER 1 © WEB API IN ASP.NET

1-7. Use CSRF Protection
Problem

You'd like to include CSRF (Cross-Site Request Forgery) protection against the data submitted from your MVC pages
to the ASP.NET Web API endpoints.

Solution

ASP.NET already includes CSRF protection functionality, through the use of System.Web.Helpers.AntiForgery class
(part of System.Web.WebPages).

It will generate two tokens: a cookie token and a string-based one that can be embedded into a form or a request
header (in case of AJAX). To prevent CSRF attacks, form submissions and AJAX requests sent to the API must include
both of the tokens that will get validated on the server side.

In ASP.NET Web AP]J, it’s typical to implement a cross cutting concern like anti-CSRF token validation as a
MessageHandler.

How It Works

To generate a token within the context of MVC application, you call the AntiForgeryToken HtmlHelper extension
method from inside a form.

<form id="myForm">
@Html.AntiForgeryToken()
//other fields

</form>

This helper uses the AntiForgery class under the hood. It writes a cookie token to the response, and generates a
field named __ RequestVerificationToken, which will be sent alongside your form data.

To validate the token on the server side, you call the static Validate method on the AntiForgery class. Ifit’s called
without parameters, it will use HttpContext.Current and try to extract the tokens from the relevant cookie and from
the request body, assuming that the body is indeed a form and thata _ RequestVerificationToken is present there.

The method is void so if the request validates successfully, nothing happens; otherwise, an
HttpAntiForgeryException is thrown. You can catch that and return a relevant response to the client (for example an
HTTP 403 Forbidden status code).

An alternative approach is to call Validate method and manually pass in both tokens. It is then up to you
to retrieve them from the request; for example, it could be from the headers. This approach is also free of the
dependency on the HttpContext.

For Web API, a custom message handler responsible for CSRF token validation can intercept every request as
soon as it enters the Web API, perform the necessary checks, and continue with the pipeline execution, or, in case the
request is invalid, short-circuit an error response (immediately return an error status code).

The Code

An example of a MessageHandler that performs the CSRF validation is shown in Listing 1-23. The code has two
paths: one for AJAX requests and one for all other requests, which are simply assumed to be form submissions. If it’s
an AJAX request, you attempt to retrieve the token from the request header and the cookie token from the cookies
collection sent alongside the request. In all other cases, the parameterless Validate method is used, so you rely on the
framework to extract the tokens on its own.

If the validation fails, the client gets an immediate 403 Forbidden response.

25

CHAPTER 1 © WEB API IN ASP.NET

Listing 1-23. Anti-CSRF Message Handler

public class AntiForgeryHandler : DelegatingHandler

{
protected override async Task<HttpResponseMessage> SendAsync(
HttpRequestMessage request,
CancellationToken cancellationToken)
{
string cookieToken = null;
string formToken = null;
if (request.IsAjaxRequest())
{
IEnumerable<string> tokenHeaders;
if (request.Headers.TryGetValues(" RequestVerificationToken", out tokenHeaders))
var cookie = request.Headers.GetCookies(AntiForgeryConfig.CookieName).
FirstOrDefault();
if (cookie != null)
{
cookieToken = cookie[AntiForgeryConfig.CookieName].Value;
}
formToken = tokenHeaders.FirstOrDefault();
}
}
try
{
if (cookieToken != null &3 formToken != null)
{
AntiForgery.Validate(cookieToken, formToken);
}
else
{
AntiForgery.Validate();
}
}
catch (HttpAntiForgeryException)
{
return request.CreateResponse(HttpStatusCode.Forbidden);
}
return await base.SendAsync(request, cancellationToken);
}
}

The handler is then registered against the HttpConfiguration to globally protect your API.

config.MessageHandlers.Add(new AntiForgeryHandler());

26

CHAPTER 1 © WEB API IN ASP.NET

Building an anti-CSRF shield as a message handler is not the only way. You could just as well take the same code
and place it inside a filter which you can then selectively apply to the relevant actions (similarly to how validation is
done with filters, which is discussed in Recipe 5-4). A message handler, instead of being globally used, can also be
attached to specific routes only. This is discussed in Recipe 3-9.

HttpRequestMessage does have a built-in way for checking if the request is an AJAX request, so the code uses
a simple extension method to facilitate that, relying on the X-Requested-With header, which most of the JavaScript
frameworks automatically send. That method is shown in Listing 1-24.

Listing 1-24. An Extension Method Checking if the HttpRequestMessage is an AJAX One

public static class HttpRequestMessageExtensions
{
public static bool IsAjaxRequest(this HttpRequestMessage request)
{
IEnumerable<string> headers;
if (request.Headers.TryGetValues("X-Requested-With", out headers))

var header = headers.FirstOrDefault();
if (!string.IsNullOrEmpty(header))

return header.TolowerInvariant() == "xmlhttprequest";

}

return false;

A simple form and an AJAX request, both utilizing the anti-CSRF tokens, are shown in Listing 1-25. In the case of
a traditional form, the HTML helper renders a hidden input field and anti-forgery token is submitted alongside the
form data automatically. In the case of an AJAX request, you explicitly read the token value from the rendered hidden
input field, and attach it to the request in a custom header field.

Listing 1-25. Using the Anti-CSRF Protection in a Form and AJAX Request That Is Submitted to ASP.NET Web API

//HTML form
<form id="form1" method="post" action="/api/form" enctype="application/x-www-form-urlencoded">
@Html.AntiForgeryToken()
<div>
<label for="name">Name</label>
</div>
<div>
<input type="text" name="name" value="Some Name" />
</div>
<div>
<button id="postData" name="postData">Post form</button>
</div>
</form>

27

CHAPTER 1 © WEB API IN ASP.NET

//AJAX form
@Html.AntiForgeryToken()
<input id="item]S" type="text" disabled="disabled" name="text" value="some text" />
<div>
<button id="postJS" name="post]S">Post JS</button>
</div>
<script type="text/javascript">
$(function () {
$("#postIS").on("click", function () {
$.ajax({
dataType: "json",
data: JSON.stringify({ name: $("#itemdS").val() }),
type: "POST",
headers: {
" __RequestVerificationToken": $("#jsData input[name='__
RequestVerificationToken']").val()
}s
contentType: "application/json; charset=utf-8",
url: "/api/items"
}).done(function (res) {
alert(res.Name);
D;
1;
1;

</script>

1-8. Add Support for Session State
Problem

Your web application, built around ASP.NET Web AP]I, requires you to use the session to store some user-specific
context on the server side.

Solution

ASP.NET Web API does not support sessions out of the box, as it does not rely at all on System.Web. It also tries to
break away from artificial, non-HTTP like concepts, and session is one of them (HTTP is stateless, after all).
However, if you are running your ASP.NET Web API within the ASP.NET runtime, you can still enable session
support. There are two ways to do it: globally, for the entire AP], or locally, for specific routes only.
To enable session globally, you need to explicitly set the session behavior as SessionStateBehavior.Required
in the Global.asax.

protected void Application_PostAuthorizeRequest()

{
}

HttpContext.Current.SetSessionStateBehavior(SessionStateBehavior.Required);

To do it per route, you can introduce a route handler that implements IRequiresSessionState. Then, such a
handler can be attached to specific Web API routes, enabling session state on requests to those routes.

28

CHAPTER 1 © WEB API IN ASP.NET

How It Works

In the default ASP.NET Web API templates, you are guided to declare your routes in a static WebApiConfig class,
against an instance of HttpConfiguration. However, it is possible to define Web API routes against the System.Web.
RouteCollection too, in the same place where you define MVC routes, as the framework ships with an extension
method allowing you to do just that.

While MapHttpRoute overloads are typically used as if they are void, in fact the method does return an instance of
a newly declared route; it’s just that the result of the invocation of the method is typically thrown away. In the case of
the route declared directly against System.Web.RouteCollection, the return would be a System.Web.Route object, to
which you are able to assign an IRouteHandler.

When running on top of ASP.NET, the ASP.NET Web API framework uses the same mechanism to ensure API-bound
requests will reach it; it assigns HttpControllerRouteHandler to each Web APIroute. HttpControllerRouteHandler,
in the GetHttpHandler method, returns an instance of HttpControllerHandler, which is the entry point to the ASPNET
Web API pipeline. HttpControllerHandler, albeit very complex (it’s the heart of Web API),
is simply a traditional IHttpAsyncHandler (an async version of the old school IHttpHandler) under the hood.

You can enforce session presence on an IHttpHandler by making it implement an IRequiresSessionState
marker interface. ASP.NET will explicitly enable session state for each route handler implementing that interface.

Alternatively, on the global scale, calling the HttpContext.Current.SetSessionStateBehavior method
and passing in SessionStateBehavior.Required explicitly enables a session for the current HttpContext.
The SetSessionStateBehavior method must be called before the AcquireRequestState event.

The Code

As you have probably concluded already, you'll need to customize two classes: HttpControllerHandler and
HttpControllerRouteHandler. You'll create a custom SessionHttpControllerHandler that implements
IRequriesSessionState and a custom SessionHttpControllerRouteHandler that simply acts as a factory that
returns SessionHttpControllerHandler, instead of the default type. These are shown in Listing 1-26.

Listing 1-26. Customized HttpControllerHandler and HttpControllerRouteHandler

public class SessionControllerHandler : HttpControllerHandler, IRequiresSessionState

{

public SessionControllerHandler(RouteData routeData)

: base(routeData)
{1}
}
public class SessionHttpControllerRouteHandler : HttpControllerRouteHandler
{
protected override IHttpHandler GetHttpHandler(RequestContext requestContext)
{
return new SessionControllerHandler(requestContext.RouteData);
}
}

You should now move your route definition from WebApiConfig to the RouteConfig class, as you need to perform
it against RouteCollection. Then, SessionHttpControllerRouteHandler should be set as the RouteHandler on the
created route. This is shown in Listing 1-27.

29

CHAPTER 1 © WEB API IN ASP.NET

Listing 1-27. Registering Web API Routes Against System.Web.RouteCollection

public static void RegisterRoutes(RouteCollection routes)

{
routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
//Web API with session
routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional }
) .RouteHandler = new SessionHttpControllerRouteHandler();
//MVC
routes.MapRoute(
name: "Default"”,
url: "{controller}/{action}/{id}",
defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional }
)5
}

If you are feeling really adventurous, there is one more trick you may want to perform, which will allow you to
not have to move your route registration into RouteConfig, and still perform it against HttpConfiguration, from
WebApiConfig. Moreover, it will also automagically enable session for all of your Web API routes.

When you register the routes through Web API configuration, they will all be registered against the underlying
RouteTable as routes with the singleton HttpControllerRouteHandler.Instance as the route handler. This allows
ASP.NET to forward all of the calls to Web API routes, to the Web API pipeline. That singleton is actually a Lazy<HttpCo
ntrollerRouteHandler>. You could, at your application startup, swap that singleton instance with a different subclass
(in your case SessionHttpControllerRouteHandler), which will allow you to continue registering your routes against
HttpConfiguration, and will ensure every single Web API route uses SessionHttpControllerRouteHandler, which in
turn means that they all have access to session state. This simple reflection-based trick is shown in Listing 1-28.

Listing 1-28. Arbitrarily Enabling Session on All ASP.NET Web API Routes Through a Reflection Trick

public static class WebApiConfig
{

public static void Register(HttpConfiguration config)

{
var httpControllerRouteHandler = typeof(HttpControllerRouteHandler).GetField(" instance",

BindingFlags.Static | BindingFlags.NonPublic);
if (httpControllerRouteHandler != null)

httpControllerRouteHandler.SetValue(null,
new Lazy<HttpControllerRouteHandler>(() => new SessionHttpControllerRouteHandler(),
true));
}

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "api/{controller}/{id}",

30

CHAPTER 1 © WEB API IN ASP.NET

defaults: new {id = RouteParameter.Optional}
)s
config.MapHttpAttributeRoutes();

Now, just as proof that this is indeed working, let’s put together a simple ApiController that will simulate dice
throwing. It will give you a random 1-6 value, as well as the result of the previous throw, coming from the session. This
is shown in Listing 1-29.

Listing 1-29. A Sample ApiController Relying on Session State

public class DiceResult

{
public int NewValue { get; set; }
public int LastValue { get; set; }
}

public class DiceController : ApiController

{
public DiceResult Get()

{

var newValue = new Random().Next(1, 7);

object context;
if (Request.Properties.TryGetValue("MS_HttpContext", out context))

var httpContext = context as HttpContextBase;
if (httpContext != null &3 httpContext.Session != null)
{

var lastValue = httpContext.Session["LastValue"] as int?;
httpContext.Session["LastValue"] = newValue;

return new DiceResult

{

NewValue = newValue,
LastValue = lastValue ?? 0

};
}

return new DiceResult { NewValue = newValue};

Notice that you retrieve HttpContext from the HttpRequestMessage Properties dictionary, from the
MS_HttpContext key. This is a more testable way than directly accessing System.Web.HttpContext.Current.

31

CHAPTER 2

ASP.NET Web API Outside of IIS W,

In this chapter, I'll go beyond the classic scenario of hosting ASP.NET Web API on IIS. ASP.NET Web API, despite its
name, is entirely independent from the ASP.NET runtime. You can embed Web API into almost any .NET process,
namely console applications or Windows services, as well as class libraries that can be plugged into an existing
pre-defined architecture in Microsoft Azure.

The goal of this chapter is to provide a compact, yet comprehensive overview of the various options that are
available to you. You will learn how to do the following:

e Self-host ASP.NET Web API using the WCF hosting adapter (Recipe 2-1)
e Host ASP.NET Web API on top of OWIN (Open Web Interface for .NET) (Recipe 2-2)
e Host within a console application and Windows Services (Recipes 2-1 and 2-2)

e Host ASP.NET Web API in Microsoft Azure, as part of Azure Mobiles Services or in an Azure
Worker Role (Recipes 2-3 and 2-5)

e Rapidly wireframe ASP.NET Web API projects with scriptcs (Recipe 2-4)
e Build Web APIs with F# (Recipe 2-6)

ASP.NET Web API can also be hosted entirely in memory, without even touching the networking stack; however,
this will be discussed in detail in Recipe 11-7, as its primary use case is for testing.

2-1. Self-Host ASP.NET Web API
Problem
You would like to run your Web API without IIS and the ASP.NET runtime, using Web API’s self-hosting capabilities.

Solution

The package enabling Web API self-hosting, using a Windows Communication Foundation hardened core, is available
on NuGet:

Install-Package Microsoft.AspNet.WebApi.SelfHost
To run a self-hosted ASP.NET Web API (Listing 2-1), you need to create an instance of an

HttpSelfHostConfiguration and pass it into an instance of HttpSelfHostServer, which will create the WCF channel
stack responsible for the HTTP interaction of your Web API service.

33

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

Listing 2-1. Self-Hosting a Web API

var address = "http://localhost:900";
var config = new HttpSelfHostConfiguration(address);
//configure the HttpConfiguration as you wish

var server = new HttpSelfHostServer(config)

server.OpenAsync().Wait();

Console.WriteLine("Server running at {0}. Press any key to exit", address);
Console.ReadLine();

How It Works

Since its first version, Web API has shipped with a self-hosted mode, which is based on HttpListener and allows you
to run Web API services outside of ASP.NET. You can turn any .NET application into a Web API server, as long as it
meets the following prerequisites:

e Itcanlisten on a specific port, meaning that the URL and port had been reserved for the
application with the relevant netsh command, or the application is running with elevated
(admin) privileges.

e Itis able to reference and utilize the WCF components that Web API self-host is built on, such
as System. ServiceModel (for example, Windows Store applications cannot).

ASP.NET Web API self-host uses the WCF channel stack layer to obtain request messages from the underlying
HTTP infrastructure. Internally, HttpSelfHostServer sets up an HttpBinding which is configured using the data
provided through HttpSelfHostConfiguration. Then the HttpBinding is used to configure a WCF message channel
stack, which is responsible for the communication with the operating system’s networking stack; on Windows, that’s
HTTP.SYS (which would also be responsible for HTTP requests for IIS).

ASP.NET Web API self-host internally relies on an HttpListener class, which requires that any application that
uses it to listen on a specific port fulfills one of two requirements:

e Itruns with elevated privileges (it can then listen on any port).

e The account used to run the application has previously been granted explicit permission to
listen on the port being used. This is the so called reservation.

Running the application using the administrator’s identity is often not the best idea, so it's more common to go
with the second option. You can use the netsh tool to reserve a URL for a specific user account, like so:

//add a URL reservation
netsh http add urlacl url=http://+:900/ user=filip-pc\filip

//remove a URL reservation
netsh http delete urlacl url=http://+:8080/

At application startup, HttpListener tries to register a URL to be able to receive HTTP requests, and if neither of
the two preconditions is met (application is not running with elevated privileges or URL has not been reserved), you

will encounter the following error at Web API startup:

System.ServiceModel. AddressAccessDeniedException: HTTP could not register URL http://+:900/ ...
Your process does not have access rights to this namespace

34

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

Note You can read more about HTTP Server API, Reservations, Registrations, and Routing at MSDN
http://msdn.microsoft.com/en-us/library/Aa364673.

Having to explicitly start the server by hand (as was shown in Listing 2-1) and being able to shut it down
at any time without exiting the host application are the key differences from using Web API in the ASP.NET
runtime. Under ASP.NET, the HttpServer instance handling your Web API HTTP interaction is statically
created by the GlobalConfiguration object the first time HttpControllerRouteHandler (a Web API-specific
HttpTaskAsyncHandler) is used.

HttpSelfHostConfiguration, shown in Listing 2-2, extends the default HttpConfiguration and introduces a few
of the WCF-specific properties along the way. As a consequence, a Web API host created using self-host is not always
100% portable to ASP.NET, and vice versa.

Listing 2-2. Definition of HttpSelfHostConfiguration

public class HttpSelfHostConfiguration : HttpConfiguration
{
public HttpSelfHostConfiguration(string baseAddress);
public HttpSelfHostConfiguration(Uri baseAddress);

public Uri BaseAddress { get; }

public System.ServiceModel.HttpClientCredentialType ClientCredentialType { get; set; }
public System.ServiceModel.HostNameComparisonMode HostNameComparisonMode { get; set; }
public int MaxBufferSize { get; set; }

public int MaxConcurrentRequests { get; set; }

public long MaxReceivedMessageSize { get; set; }

public TimeSpan ReceiveTimeout { get; set; }

public TimeSpan SendTimeout { get; set; }

public System.ServiceModel.TransferMode TransferMode { get; set; }

public System.IdentityModel.Selectors.UserNamePasswordValidator UserNamePasswordValidator
{ get; set; }

public System.IdentityModel.Selectors.X509CertificateValidator X509CertificateValidator
{ get; set; }

protected virtual System.ServiceModel.Channels.BindingParameterCollection
OnConfigureBinding(HttpBinding httpBinding);

Additionally, HttpSelfHostConfiguration exposes a virtual OnConfigureBinding method which allows you to
tap into the mechanism of configuring the HttpBinding created by HttpSelfHostServer just before it gets used to set
up the WCF channel stack.

The ASP.NET Web API self-host defaults to 100 maximum concurrent requests per processor of your server;
you can adjust this by modifying the MaxConcurrentRequests property. Unless modified, the SendTimeout and
ReceiveTimeout settings default to 60 and 600 seconds, respectively.

35

http://msdn.microsoft.com/en-us/library/Aa364673

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

HttpSelfHostConfiguration also exposes—contrary to the regular HttpConfiguration—a TransferMode
setting, allowing you to globally define whether all communication with your Web API should be done in streamed
or buffered mode. By default, TransferMode . Buffered is used; switching to Streamed mode also changes the native
channel shape from IDuplexSessionChannel (used in buffered mode) to IRequestChannel and IReplyChannel. This
is a considerable difference from the web host, as there you are able to influence the streaming/buffering setting on a
per-request basis.

Finally, a critical difference between ASP.NET Web API web host and self-host is the fact that since self-host
operates outside of the ASP.NET runtime, there is no global System.Web.HttpContext available. As a result, you have
to be extremely careful when crafting your code and eliminate any references to HttpContext.Current.

The Code

Using ASP.NET Web API self-host is a great alternative to hosting on ASP.NET/IIS as it gives you the ability to create
small, lightweight, focused services which are extremely easy to deploy and manage—either as console applications
or Windows services.

Aslong as you are aware of some of the small differences mentioned earlier in this chapter, working with Web
API in self-hosted mode is almost identical to working within the ASP.NET context. You still define the controllers,
filters, message handlers, routes, and any other components of the Web API pipeline like you do on other hosts. The
example, using self-host from a console application, is shown in Listing 2-3.

Listing 2-3. A Sample Console Application Using ASP.NET Web API Self-Host

class Program
{
static void Main(string[] args)
{
var address = "http://localhost:900";
var config = new HttpSelfHostConfiguration(address);
config.MapHttpAttributeRoutes();

using (var server = new HttpSelfHostServer(config))
server.OpenAsync().Wait();

Console.WriteLine("Server running at {0}. Press any key to exit", address);
Console.ReadlLine();

Tip While Web API self-host is still being maintained and updated by Microsoft, it is generally recommended to
use the Web API OWIN Self Host (Recipe 2-2) host instead, as it provides similar functionality with less restrictions and
more flexibility.

36

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

2-2. Host ASP.NET Web API with OWIN

Problem
You'd like to use ASP.NET Web API on top of OWIN, the Open Web Interface for .NET.

Solution

To run a self-hosted (HttpListener-based) ASP.NET Web API using Project Katana, Microsoft’s implementation of
OWIN, use the Microsoft.AspNet.WebApi.OwinSelfHost NuGet package. To run ASP.NET Web API against other
types of Katana-compatible servers, install the Microsoft.AspNet.WebApi.Owin NuGet package.

In either case, once installed, in order to inject the ASP.NET Web API middleware adapter, you need to create
a Startup class with a single Configuration method, which takes in an IAppBuilder. You should then call the
UselebApi extension method and pass in the correctly configured Web API HttpConfiguration object, which is
shown in Listing 2-4.

Listing 2-4. Sample Startup Class for Web API Katana Hosting
public class Startup

{
public void Configuration(IAppBuilder appBuilder)
{
var config = new HttpConfiguration();
//add routes, configure Web API
config.MapHttpAttributeRoutes();
appBuilder.UseWebApi(config);
}
}
How It Works

OWIN, the Open Web Interface for .NET, is a community-driven specification defining a standard interaction between
.NET web servers and .NET web applications.

As a consequence, OWIN helps to decouple the host (i.e. console application), the server (i.e. HttpListener)
and the application framework from each other, effectively eliminating environmental dependencies from the
applications, which in turn results in a much more portable and robust web application landscape and ecosystem in
.NET. OWIN was originally inspired by the Rack interface used in Ruby as minimal contract between the server and a
Ruby on Rails application.

The interface describing the application-server communication is reduced to one trivial delegate.

using AppFunc = Func<
IDictionary<string, object>, // Environment
Task>; // Done

The environment dictionary acts as a store for all requests (summarized in Table 2-1), response (summarized in

Table 2-2) and all state data, and it’s the responsibility of an OWIN-compatible server to populate it with relevant data
which can then be consumed by the applications.

37

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

Table 2-1. OWIN Request Environment Dictionary Keys. Source: Open Web Server Interface for .NET, v1.0.0,
http://owin.orqg/spec/owin-1.0.0.html, Copyright: OWIN contributors, License: Creative Commons

Attribution 3.0 Unported License

Required Key Name

Value Description

Yes “owin.RequestBody”

Yes “owin.RequestHeaders”
Yes “owin.RequestMethod”

Yes “owin.RequestPath”

Yes “owin.RequestPathBase”
Yes “owin.RequestProtocol”
Yes “owin.RequestQueryString”
Yes “owin.RequestScheme”

A Streamwith the request body, if any. Stream.Null MAY be used as a
placeholder if there is no request body.

An IDictionary<string, string[]> of request headers.

A string containing the HTTP request method of the request

(e.g., “GET’, “POST”).

A string containing the request path. The path MUST be relative to the
root of the application delegate

A string containing the portion of the request path corresponding to the
root of the application delegate

A string containing the protocol name and version (e.g. “HTTP/1.0” or
“HTTP/1.1").

A string containing the query string component of the HTTP request
UR], without the leading “?” (e.g., “foo=bar8baz=quux”). The value may
be an empty string.

A string containing the URI scheme used for the request
(e.g., “http’; “https”)

Table 2-2. Owin Response Environment Dictionary Keys. Source: Open Web Server Interface for .NET, v1.0.0,
http://owin.org/spec/owin-1.0.0.html, Copyright: OWIN contributors, License: Creative Commons

Attribution 3.0 Unported License

Required Key Name

Value Description

Yes “owin.ResponseBody” A Stream used to write out the response bodyj, if any.

Yes “owin.ResponseHeaders” An IDictionary<string, string[]> of response headers.

No “owin.ResponseStatusCode” An optional int containing the HTTP response status code as
defined in RFC 2616 section 6.1.1. The default is 200.

No “‘owin.ResponseReasonPhrase” An optional string containing the reason phrase associated the
given status code. If none is provided, then the server SHOULD
provide a default as described in RFC 2616 section 6.1.1

No “owin.ResponseProtocol” An optional string containing the protocol name and version

(e.g. “HTTP/1.0” or “HTTP/1.1"). If none is provided, then the
“owin.RequestProtocol” key’s value is the default.

Due to this simplicity, lack of heavy external dependencies, asynchronous design, and a general no-frills
approach, OWIN encourages and facilitates development of small, focused components (middleware) which can
then be used across different frameworks. Moreover, OWIN-compatible applications are generally easily portable to

different platforms.

38

http://owin.org/spec/owin-1.0.0.html
http://owin.org/spec/owin-1.0.0.html

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

While the OWIN specification does not define a specific way of declaring an OWIN entry point in an assembly or
how to define a startup sequence, a de facto standard has emerged from Project Katana, in the form of a Startup class
and an IAppBuilder.

Project Katana is a Microsoft’s OWIN implementation and contains the following:

e ahost(OwinHost.exe)
e asetofservers (HttpListener, SystemiWeb)
¢ anumber of middleware components (i.e. Authentication components)

Katana will try to find the developer’s code by looking for a Startup class, based on the following order
of precedence:

e Lookatthe appSettings owin:AppStartup as a type hint.
e Lookat assembly-level attribute OwinStartupAttribute.
e Scan all AppDomain assemblies looking for a class named Startup.

Once the Startup type is found, it will try to call a configuration method matching the following signature:
void Configuration(IAppBuilder app)

And this is exactly the place where a developer can plug into the OWIN pipeline, and register his middleware or
adapters for his web framework(s) of choice, as shown in Listing 2-5.

Listing 2-5. A Sample Startup Class and a Definition of IAppBuilder

public class Startup

{
public void Configuration(IAppBuilder app)
{
app.Use(typeof(SomeMiddleware)); //register SomeMiddleware
app.UseNancy(); //register NancyFx framework
}
}
public interface IAppBuilder
{
IDictionary<string, object> Properties { get; }
IAppBuilder Use(object middleware, params object[] args);
object Build(Type returnType);
IAppBuilder New();
}

ASP.NET Web API supports OWIN by providing an adapter class called HttpMessageHandlerAdapter between
the OWIN Dictionary and its request/response-specific entries and the native Web API HttpRequestMessage and
HttpResponseMessage types.

39

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

The UselebApi extension method from Microsoft.AspNet.WebApi.Owin will internally set the default
IHostBufferPolicySelector to OwinBufferPolicySelector, register HttpMessageHandlerAdapter as OWIN
middleware, and plug in the default HttpServer. In case you want to customize the entry point to your Web API, you
can plug in an alternative HttpServer too, using a different extension method:

public static IAppBuilder UseWebApi(this IAppBuilder builder, HttpConfiguration configuration)
public static IAppBuilder UseWebApi(this IAppBuilder builder, HttpServer httpServer)

Tip OwinBufferPolicySelector is discussed in more detail in Recipe 4-12.

The Code

The example in Listing 2-6 shows a Web API hosted using OWIN self-host within a Windows Service. This is a
particularly useful solution due to the ease with which you can now manage such a Web API from different Windows
tools and scripts.

Listing 2-6. Windows Service Utilizing Web API OWIN Self-Host

public class Startup

{
public void Configuration(IAppBuilder appBuilder)

{

var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();

appBuilder.UseWebApi(config);

}

public partial class WebApiService : ServiceBase

{

private IDisposable owinHost;
const string Address = "http://localhost:999/";

public WebApiService()
{

InitializeComponent();

}

protected override void OnStart(string[] args)

{
}

protected override void OnStop()

{
}

_owinHost = WebApp.Start<Startup>(Address);

_owinHost.Dispose();

40

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

The WebApp static class (Listing 2-7) is part of Microsoft.Owin.Hosting and is used to load and start a web
application using the Katana self-host. You can either provide a Startup class that you have already created or
define the behavior inline using Action<IAppBuilder>. As far as the host URL goes, you may provide a raw string
representing the address or use a more elaborate StartupOptions to configure any extra settings.

Listing 2-7. Definition of the WebApp Class from Katana

public static class WebApp
{
public static IDisposable Start<TStartup>(StartOptions options);
public static IDisposable Start(StartOptions options);
public static IDisposable Start<TStartup>(string url);
public static IDisposable Start(string url);
public static IDisposable Start(StartOptions options, Action<Owin.IAppBuilder> startup);
public static IDisposable Start(string url, Action<Owin.IAppBuilder> startup);

The server started by the WebApp. Start returns an IDisposable which can be used to shut it down whenever
necessary. To deploy such a Windows service, you need to add an Installer, which you can do by right-clicking on
the Windows Service designer surface and choose the Add Installer option. The bare minimum that should be set are
the name of the service as it will appear in the list of installed services, which is set through the Properties pane of the
auto-generated serviceInstalleri, and the account used to run the service, set through the Properties of the
auto-generated serviceProcessInstalleri.

The service can installed using installutil (the Visual Studio developer command prompt has it in the PATH
variable already). Given that your Windows service project is called Apress.Recipes.WebApi, you'd call:

installutil Apress.Recipes.WebApi.exe

2-3. Host ASP.NET Web API in Azure Mobile Services
Problem

You want to host an HTTP API in Azure so that your service is monitored, scaled, and managed for you. Additionally,
you would like to have built-in support for authentication and push notifications as you'd like your API to be used by a
wide range of clients and devices.

Solution

You can take advantage of the excellent Azure Mobile Services (also known as ZUMO) offered by Microsoft Azure,
allowing you to build rich application backends for all kinds of devices and platforms that have HTTP connectivity.
Originally a Node.js-exclusive platform, since early 2014 Azure Mobile Services has been supporting .NET by
providing an option to host ASP.NET Web API.

To create a new Azure Mobile Services, head off to the Microsoft Azure management portal and choose New »
Compute » Mobile Service » Create and then complete a short 2-step wizard like the one shown in Figure 2-1.

41

CHAPTER 2 ASP.NET WEB API OUTSIDE OF IIS

NEW MOBILE SERVICE

Create a Mobile Service

URL
apressrecipes

.azure-mobile.net

DATABASE

Use an existing SQL database b

REGION

West US bl

BACKEND

NET (PREVIEW) v

Figure 2-1. Creating a new .NET-based Azure Mobile Service

You can then open up your new Mobile Service from the left-hand menu, and, after clicking “Connect an Existing
App’; download the snapshot of the service as a Visual Studio solution. This view is shown in Figure 2-2.

42

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

apressrecipes

&3 DASHBOARD SCHEDULER PUSH DENTITY CONFIGURE SCALE prev LOGS

Your mobile service was created.

Now let's connect it to an app.

Skip Quick Start the next time | visit

CHOOSEAPLATFORM (Rt it ol R et m

GET STARTED
CREATE A NEW WINDOWS STORE APP
4 CONNECT AN EXISTING WINDOWS STORE APP

Follow these steps to connect an existing application to your mobile service.

Download your service locally

Download and extract your personalized starter project.

Add the mobile service project to your solution and build it.

Figure 2-2. Downloading the sample .NET-based Azure Mobile Service

The downloaded project can be used to develop your API locally; once you are happy with the end result, you
can publish it back to Azure, using MsDeploy (your Mobile Service has an associated Publishing Profile which you can
download from the Azure Management Portal) or through git deployment (also configurable in the portal).

Note Technically speaking, contrary to the chapter title, Azure Mobile Services actually use IIS under the hood.
However, the extra features included in ZUMO are beyond the typical ASP.NET Web API that you might host on IIS yourself.

How It Works

In addition to being based on the familiar ASPNET Web AP]I, the .NET version of Azure Mobile Services adds most of
the great features of the ZUMO platform, such as support for cross-device push notifications, support for scheduled
jobs, and integration with the most popular authentication providers.

The out-of-the-box Azure Mobile Services Web API setup is built and configured around the following:

e OWIN pipeline
e Entity Framework and integration with SQL Azure

¢ Autofac for dependency injection

43

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

e Web API tracing to SystemDiagnostics.Trace

e OData support

e Integration with popular authentication providers (Google, Twitter, Microsoft, Facebook)
e Integration with push services for the major devices and with Azure Notification Hubs

Most of the extra features of Azure Mobile Services are baked into the Microsoft.WindowsAzure.Mobile.
Service package.

To get the most out of Web API hosted in Azure Mobile Services, you should inherit your controllers from
TableController or TableController<TData>. This base class exposes the ApiServices property, which you can use
to access all of the terrific features of ZUMO. The definition of that type is shown in Listing 2-8.

Listing 2-8. Definition of ApiServices

public class ApiServices : IDisposable

{
public ApiServices(HttpConfiguration config);

public virtual HttpConfiguration Config { get; set; }

public virtual ITraceWriter Log { get; set; }

public virtual IDictionary<object, object> Properties { get; }
public virtual PushClient Push { get; set; }

public virtual ServiceSettingsDictionary Settings { get; set; }

public void Dispose();
protected virtual void Dispose(bool disposing);

ServiceSettingsDictionary is shown in Listing 2-9 and represents a de facto configuration of your Azure
Mobile Services instance, including things like authentication providers keys/secrets, notification hubs setup, and
connection string settings. Any values changed in the ServiceSettingsDictionary object at runtime will only stay in
effect for the duration of the lifetime of the current System.AppDomain; if you wish to do it in a persistent manner, you
should update them in the Azure Management Portal.

Listing 2-9. Definition of ServiceSettingsDictionary

public class ServiceSettingsDictionary : Dictionary<string, string>
{
public ServiceSettingsDictionary();
protected ServiceSettingsDictionary(SerializationInfo info, StreamingContext context);

public virtual string AzureActiveDirectoryAudience { get; set; }
public IDictionary<string, ConnectionSettings> Connections { get; }
public virtual string FacebookAppId { get; set; }

public virtual string FacebookSecret { get; set; }

public virtual string GoogleAppId { get; set; }

public virtual string GoogleSecret { get; set; }

public virtual bool IsFacebookAuthenticationEnabled { get; }

public virtual bool IsGoogleAuthenticationEnabled { get; }

public virtual bool IsMicrosoftAccountAuthenticationEnabled { get; }
public virtual bool IsTwitterAuthenticationEnabled { get; }

public virtual string Key { get; set; }

44

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

public virtual string MasterKey { get; set; }

public virtual string MicrosoftAccountClientId { get; set; }
public virtual string MicrosoftAccountClientSecret { get; set; }
public virtual string Name { get; set; }

public virtual string NotificationHubName { get; set; }

public virtual string Schema { get; set; }

public virtual string SubscriptionId { get; set; }

public virtual string TwitterConsumerkey { get; set; }

public virtual string TwitterConsumerSecret { get; set; }

public static string GetSchemaName();

The PushClient exposed by the ApiServices allows you to send a notification payload to connected devices
directly from the controller; note that they have to be implementing the marker IPushMessage interface. Each of the
popular devices uses different technology for push notifications, but Mobile Services-hosted Web API makes it really
to use all of them, providing a relevant implementation of IPushMessage for each of the platforms.

i0S: Apple Push Notification Service (APNS) through ApplePushMessage type

e Android: Google Cloud Messaging for Chrome (GCM) through GooglePushMessage type

e Windows Phone: Microsoft Push Notifications Service (MPNS) through MpnsPushMessage type
¢ Windows 8: WPNS through WindowsPushMessage type

Authentication is supported via a number of external packages from the Microsoft.Owin.Security.* family.
To enable authentication in your controller, simply add the [Authorizelevel (AuthorizationLevel.User)]
(or any other appropriate level) attribute to your controller/action, which will enforce the access control restrictions
on the connecting client. When running locally, ZUMO Web API will pick up the keys and secrets from web.config
settings (see Listing 2-10), but once you deploy to Azure those will be overridden by the settings present in your Azure
Management Portal.

Listing 2-10. Appropriate Key Names to Enable Authentication Support with Different Providers

<add key="MS_MicrosoftClientID" value="Overridden by portal settings" />

<add key="MS_MicrosoftClientSecret" value="Overridden by portal settings" />
<add key="MS_FacebookAppID" value="Overridden by portal settings" />

<add key="MS_FacebookAppSecret” value="Overridden by portal settings" />

<add key="MS_GoogleClientID" value="Overridden by portal settings" />

<add key="MS_GoogleClientSecret" value="Overridden by portal settings" />

<add key="MS_TwitterConsumerKey" value=" Overridden by portal settings " />
<add key="MS_TwitterConsumerSecret" value=" Overridden by portal settings " />

Interestingly, Azure Mobile Services Web API ships with Autofac baked in, so you get free dependency injection
out of the box. You can register your own dependencies by passing a relevant Action<HttpConfiguration,
ContainerBuilder> to the ServiceConfig.Initialize as shown in Listing 2-11.

Listing 2-11. Registering Custom Services Against Autofac in ZUMO

public static void Register()
{

var options = new ConfigOptions();

var config = ServiceConfig.Initialize(new ConfigBuilder(options, (httpConfig, autofac) =>
autofac.RegisterInstance(new MyService()).As<IService>()));

}
45

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

Finally, one of the great features of Azure Mobile Services is that it can be remotely debugged, meaning you can
attach from a local Visual Studio to a live instance of your Web API in Azure and step through the code. This feature
has to be enabled in your Azure Management Portal first, and you can then use the “Attach to Process” dialog and
point it to the DNS name of your mobile service to allow you breakpoints to hit. Henrik Frystyk Nielsen, the architect
of ASP.NET Web API and now the .NET backend for Azure Mobile Services, has a detailed blog post about this at
http://blogs.msdn.com/b/azuremobile/archive/2014/03/14/debugging-net-backend-in-visual-studio.aspx.

Tip To learn more about the Azure Mobile Services platform head over to www.windowsazure.com/en-us/develop/
mobile/resources/ for excellent tutorials and references.

The Code

Aside from some of the differences and extra features just mentioned, Web API running in Azure Mobile is very much
a typical Web API (at the time of writing at version 2.1) like you are accustomed to using. Almost all of the recipes used
in this book are applicable and usable in Azure Mobile Services.

A sample controller from a default project that gets generated for each new ZUMO account is shown in Listing 2-12.
You can immediately see that it’s a typical Web API controller, with all familiar HTTP methods and Web API constructs
such as IHttpActionResult. Interestingly, it even supports PATCH for partial updates of your entities.

Listing 2-12. Sample Controller from the Default ZUMO Project

public class TodoItemController : TableController<TodoItem>
{

protected override void Initialize(HttpControllerContext controllerContext)

{

base.Initialize(controllerContext);
apressrecipesContext context = new apressrecipesContext();
DomainManager = new EntityDomainManager<TodoItem>(context, Request, Services);

}

// GET tables/TodoItem
public IQueryable<TodoItem> GetAllTodoItems()

{
}

// GET tables/TodoItem/48D68C86-6EA6-4C25-AA33-223FC9A27959
public SingleResult<TodoItem> GetTodoItem(string id)

{
}

// PATCH tables/TodoItem/48D68C86-6EA6-4C25-AA33-223FC9A27959
public Task<TodoItem> PatchTodoItem(string id, Delta<TodoItem> patch)

{
}

return Query();

return Lookup(id);

return UpdateAsync(id, patch);

46

http://blogs.msdn.com/b/azuremobile/archive/2014/03/14/debugging-net-backend-in-visual-studio.aspx
http://www.windowsazure.com/en-us/develop/mobile/resources/
http://www.windowsazure.com/en-us/develop/mobile/resources/

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

// POST tables/TodoItem/48D68C86-6EA6-4C25-AA33-223FC9A27959
public async Task<IHttpActionResult> PostTodoItem(TodoItem item)

{

TodoItem current = await InsertAsync(item);
return CreatedAtRoute("Tables", new { id = current.Id }, current);

}

// DELETE tables/TodoItem/48D68C86-6EA6-4C25-AA33-223FC9A27959
public Task DeleteTodoItem(string id)

{
}

return DeleteAsync(id);

The controller inherits from TableController<TData>, which was mentioned before. This class is actually
constraining TData to ITableData, so if you want to use SQL Azure and the built-in Entity Framework Code First
support, you need to make sure to implement that (see Listing 2-13). The extra attributes on that interface have been
used to ensure uniform serialization across different platforms.

Listing 2-13. Definition of ITableData Interface

public interface ITableData

{
[JsonProperty(PropertyName = " createdAt")]
DateTimeOffset? CreatedAt { get; set; }
[IsonProperty(PropertyName = " deleted")]
bool Deleted { get; set; }
string Id { get; set; }
[JsonProperty(PropertyName = " updatedAt")]
DateTimeOffset? UpdatedAt { get; set; }
[JsonProperty(PropertyName = " version")]
byte[] Version { get; set; }

}

While the default template is creating a database from scratch, it’s worth noting that ITableData is using a regular
version of Entity Framework (nothing Azure Mobile Services-specific there). As a result, you can quite easily connect
to an existing DB instance too.

Tip You can also use Azure Mobile Services Web API with Azure Table Storage (WindowsAzure.MobileServices.
Backend. Storage NuGet package) and MongoDB (WindowsAzure.MobileServices.Backend.Mongo package).

If you want to push some notifications to the client, you have to use the relevant IPushMessage type
(mentioned before). Listing 2-14 shows an example of a push to an Android device.

47

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

Listing 2-14. Sample Push to Google Cloud Messaging

var message = new GooglePushMessage(new Dictionary<string, string> {{"message",
"Hello from Web API!"}}, TimeSpan.FromDays(1));

var result = await Services.Push.SendAsync(message);
Services.Log.Info(result.State.ToString());

2-4. Quick Prototypes with scriptcs
Problem

You'd like to quickly prototype or test out some of the ASP.NET Web API features, ideally without the hassle and
overhead of having to go through the solution/project creation in Visual Studio.

Solution

The open source scriptcs project provides an excellent platform for rapidly prototyping and wireframing ASP.NET
Web API projects from the convenience your favorite text editor.

Caution This recipe assumes scriptcs is installed on your machine. You can find the installation instructions at the
official scriptcs GitHub page at https://github.com/scriptcs/scriptestigetting-scriptcs.

scriptcs supports self-hosting ASP.NET Web API through a Scriptcs.WebApi script pack (scriptcs extension).
To get started, you first need to install the script pack from NuGet. The usual tool, NuGet.exe, is not even required,
as scriptcs has a built in support for NuGet.

scriptcs -install Scriptcs.WebApi

Next, you need to create a *. csx script that will be your application file and pull the newly installed script pack
into the context of your script using an ambient (global) Require<TScriptPack> method. Getting up and running with
a Web API is as simple as shown in Listing 2-15.

Listing 2-15. Up and Running with ASP.NET Web API in scriptcs in Just Eight Lines of Code

//start.csx file
public class TestController : ApiController {

public string Get() { return "Hello scriptcs!";}
}

var webApi = Require<WebApi>();

var server = webApi.CreateServer("http://localhost:900");
server.OpenAsync().Wait();

Console.ReadKey(); //prevent the application from exiting

This script will start a Web API server with a default route of {controller}/{id}. In order to execute the script,
you simply pass it as an argument to the scriptcs CLI (command-line interface):

scriptcs script.csx

48

https://github.com/scriptcs/scriptcs#getting-scriptcs

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

How It Works

scriptcs is a command-line-based tool that provides an execution engine wrapper and a rich pluggable pipeline for
scripted C# code. By default, it uses Microsoft Roslyn (for Windows) and Mono.Csharp (for Mono) and their
compiler-as-a-service capabilities to run your C# code; however, it can easily be replaced with compilers for
alternative languages, such as F#, as long as they are CLR compatible.

scriptcs also gives you access to a rich ecosystem of community contributed script packs, such as the Web API
script pack, which make lots of development tasks simpler. This mimics the Node.js world, where you compose an
application from small, individual modules. scriptcs takes your scripted code and compiles it into an in-memory
assembly, which is then invoked as if it was a regular DLL, albeit one that resides entirely in memory.

In addition to the execution of scripts, scriptcs also does a bunch of pre-processing work against your CSX file,
allowing you do things like explicitly reference external assemblies or reference scripts from other scripts (just like
you'd do in JavaScript).

Tip You can learn more about the specifics of writing scriptcs scripts at the project wiki at
https://github.com/scriptcs/scriptcs/wiki.

CSX scripts are entirely project-less and can be written from any text editor in an extremely lightweight
fashion. scriptcs ships with a plug-in for Sublime Text to provide basic syntax highlighting. In addition, scriptcs has
a REPL mode (Read-Evaluate-Print-Loop), which is an interactive console for C# that can also be used for writing
applications. This gives you a terrific chance to explore and play around with different APIs in an interactive fashion.

The concept of script packs, available via Require<TScriptPack>, is similar to Node.js and its require
functionality, so if you are familiar with that, you should immediately feel comfortable in the scriptcs world. Since
the C# semantics in scriptcs are a bit looser than in traditional C#, you don’t need to define an entry point, such as a
static void Main, as the entry point to your script is simply the first line of your script. The script pack will also take
care of loading all of the relevant assemblies and importing the needed namespaces into the context of your script and
expose some helper APIs for quickly creating a Web API server.

I've often found scriptcs indispensable for quick prototyping of ASP.NET Web API solutions, as well as for all kinds
of demos. With its relaxed, scripted C# syntax and a large number of community extensions and script packs, you are
able to get an ASP.NET Web API project up and running as quickly and smoothly as you’d have a Node.js solution.

The Code

You have already seen one simple example of running a Web API self-hosted server with scriptcs. In it, you relied on
the default setup; however, the CreateServer method of the Web API script pack also has an overload that takes an
HttpConfiguration for a more fine-tuned setup.

Listing 2-16 shows using an instance of HttpConfiguration to plugin a customized route and remove the XML
formatter from the Web API that is being hosted from within a CSX script.

Listing 2-16. Sample CSX Script Creating a Self-Hosted ASP.NET Web API

public class TestController : ApiController {
public string Get() { return "Hello scriptcs!";}
}

var webApi = Require<WebApi>();

var config = new HttpSelfHostConfiguration("http://localhost:900");
config.Routes.MapHttpRoute("MyRoute", "awesomeRoute", new {controller = "Test"});
config.Formatters.Remove(config.Formatters.XmlFormatter);

49

https://github.com/scriptcs/scriptcs/wiki

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

var server = webApi.CreateServer(config);
server.OpenAsync().Wait();

Console.ReadKey();

2-5. Host ASP.NET Web API in Azure Worker Role

Problem
You want to cloud-host a scalable ASP.NET Web API using a Microsoft Azure Worker Role.

Solution

Using the techniques presented earlier in this chapter, such as WCF self-hosting (Recipe 2-1) or Katana self-hosting
(Recipe 2-2), it’s possible to host and deploy an ASP.NET Web API solution to the cloud, to an Azure Worker Role.
You simply need to follow the instructions from the relevant previous recipe, depending on the type of host you have
chosen, except this time the host application will be an Azure Worker Role type of Visual Studio project.

To create such a project, you need to install Azure SDK first, which is available from www.windowsazure.com/
en-us/downloads/, under .NET SDKs. This will result in a new project group called Cloud being added to your Visual
Studio New Project dialog under the Visual C# section, as shown in Figure 2-3.

New Project

I Recent .NET Framework 4.5 - Sortby: Default - : S¢ nst emplat tri+E P~

4 |nstalled -
O Windows Azure Cloud Service Visual C# Type: Visual C*

4 Templates A project for creating a scalable service
b Visual Basic that runs on Windows Azure.

4 Visual C#

Windows Store

Windows

Web

Cloud

Extensibility

Reporting

Silverlight

Test

WCF

Workflow

b Visual C++

b JavaScript
Python

P Online

Figure 2-3. Project Dialog for Windows Azure Cloud Service

50

http://www.windowsazure.com/en-us/downloads/
http://www.windowsazure.com/en-us/downloads/

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

There is only a single choice, Windows Azure Cloud Service, available in this step, as you will choose the relevant
project type in the next step (Figure 2-4); in your case, that’s a Worker Role.

New Windows Azure Cloud Service
NET Framework 4.5 roles: Windows Azure Cloud Service solution:
@ Visual Basic rj" WorkerRole1
() Visual C# Worker Role
FC" ASP.NET Web Role

(=] Service with a web user interface

C* WOCF Service Web Role
Web role for WCF services

L* Worker Role
QJ Background processing service

4] [+

<" Cache Worker Role
fo3 Background processing service that hosts a ca...

%" Worker Role with Service Bus Queue
EJ Worker role processing messages from a Servi...

(V) Visual F#

ok || cancel

Figure 2-4. Second step, choosing the type of Azure Service

How It Works

Azure Workers are essentially virtual machines running Windows Server 2012 with IIS disabled. You can use them as
part of any distributed architecture to run any code that exposes TCP/HTTP/HTTPS/UDP endpoints.

When you are developing a worker solution, Azure SDK allows you to run them locally using the service emulator,
which is started automatically as soon as you start the program (F5) from Visual Studio. The emulator requires
elevated privileges, so make sure to open Visual Studio as an administrator.

To create an Azure Worker, you need to inherit from an abstract class called RoleEntryPoint, which defines the
start, stop, and run hooks, as shown in Listing 2-17.

Listing 2-17. Definition of RoleEntryPoint
public abstract class RoleEntryPoint

{
protected RoleEntryPoint();
public virtual bool OnStart();
public virtual void OnStop();
public virtual void Run();

}

51

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

In the case of a self-hosted Web AP]I, you have to start the ASPNET Web API server in the overridden OnStart
method and shut down the overridden OnStop.

The Code

An example of OWIN self-hosting ASP.NET Web API within Azure Worker is shown in Listing 2-18. As you may have
noticed, the code is very similar to hosting within a Windows Service (Recipe 2-2), as you also have to start and stop
the Web API service in two separate methods and store the IDisposable reference in a private field.

Listing 2-18. Azure Worker Role, Running an OWIN Self-Hosted ASP.NET Web API

public class WorkerRole : RoleEntryPoint

{
private IDisposable _app;
public override void Run()
while (true)
{
Thread.Sleep(10000);
Trace.TraceInformation("Working", "Information");
}
}
public override bool OnStart()
{
ServicePointManager.DefaultConnectionLimit = 12;
var endpoint = RoleEnvironment.CurrentRoleInstance.InstanceEndpoints["Default"];
var url = string.Format("{0}://{1}", endpoint.Protocol, endpoint.IPEndpoint);
_app = WebApp.Start(url, app =>
{
var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();
app.UseWebApi(config);
D;
return base.OnStart();
}
public override void OnStop()
{
if (_app != null)
{
_app.Dispose();
base.OnStop();
}
}

52

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

In this example, you used the Action<IAppBuilder> instead of a Startup class to configure your OWIN pipeline,
but obviously both approaches are applicable. Notice the specific way of referencing a port on which the API will run.
Instead of hardcoding it in the code, you need to enable it as a public endpoint on the worker. This is done by going to
the Worker Project properties and adding a new entry in the Endpoints tab (see Figure 2-5).

Configuration

Service Configuration: | All Configurations CRR
Settings
Endpoints ‘D) Add Endpoint X Remove Endpoint
Local Storage Configure the endpoints for this role. Select the certificate to use for each HTTPS endpoint when the Windows Azure Cloud Service proje
Azure (not applicable when running on the local Windows Azure compute emulator).
Certificates
) Name Type Protocol Public Port Private Port SSL Certificate Name
Caching
Default Input v || http v ||900 | (not applicable)

Figure 2-5. Configuring endpoints in Azure Worker project

You can then reference the endpoint through the static InstanceEndpoints dictionary, which returns an instance
of aRoleInstanceEndpoint, a strongly typed wrapper around the settings you previously defined.

RoleEnvironment.CurrentRoleInstance.InstanceEndpoints["<ENDPOINT NAME>"];

2-6. Use ASP.NET Web API with F#

Problem
You are looking to go beyond C# and would like to build your ASP.NET Web API with F#.

Solution

F# is a first-class citizen in .NET and Visual Studio, and as a result, ASP.NET Web API can easily be created and
maintained in F#. All of the examples in this entire book are completely compatible with F#, as long as you get used to
the syntax and, more importantly, the mindset change that comes with moving to a functional programming language.

To convert the Azure Worker Web API example from Recipe 2-5 to F#, you first need to create an F# Azure Worker
project. In the past, you used to have to create a C# worker project and an F# class library separately, and then swap
the project IDs, since Azure SDK did not ship with native F# project templates. This has since changed, and in the
second step of the Clouds Service project setup, you can now choose the F# template, as shown in Figure 2-6.

53

CHAPTER 2 * ASP.NET WEB API OUTSIDE OF IIS

o

3

New Windows Azure Cloud Service

NET Framework 4.5 roles: Windows Azure Cloud Service solution:
(%) Visual Basic

(%) Visual C#

() Visual F#

rfa Worker Role

Background processing service

] [+]

| ok || concel

Figure 2-6. Second step of creating an Azure Cloud Project, choosing the type of Azure Service using F#

Given the nature of programming in F#, there is actually less code required even to run a basic ASPNET Web API
under F# than there is with C#, and the difference only gets bigger as you add more functionality to your API.

How It Works

There are a number of good reasons to switch from C# to F#:

54

Code reduction: F# is much more concise and comes with much less syntactic noise (brackets,
white space, punctuation, etc.). Moreover, the very nature of functional programming, such

as the support for higher order functions or default immutability, can significantly reduce the
amount of code.

Fewer bugs: Smaller code base automatically translates into lower potential for errors;
moreover, the inherent lack of nulls (native F# has no notion of null) can eliminate some of
the more dreadful bugs you would normally encounter in C# programming.

Immutability by default: As opposed to C#, where mutable state is the default, immutability is
a great way to improve the correctness and coherence of your applications.

Great, intuitive support for asynchronous and parallel programming.
F# is an entirely open source language, with cross platform support.

You can still interoperate with C# in a very rich way.

CHAPTER 2 © ASP.NET WEB API OUTSIDE OF IIS

F# solves and improves some very annoying language deficiencies of C#, but going into details about F# is far
beyond the scope of this book. You can always learn more about F# at the official site of the language, tryfsharp.org.

From the Web API perspective, aside from self-hosting with OWIN like you are doing in this recipe, you can also
very easily use F# to build ASP.NET Web API on top of ASP.NET. F# community contributors have created F# Web
Application templates for both MVC and Web API, which you can add to your Visual Studio by installing the F# MVC 5
extension from http://visualstudiogallery.msdn.microsoft.com/39ae8dec-d11a-4ac9-974e-be0fdadec71b.

The Code

Recipe 2-5 ported to F# is shown in Listing 2-19. You still need to install the same Microsoft.AspNet.WebApi.OwinSelfhost
NuGet package, inherit from RoleEntryPoint, and override the three relevant methods (Run, OnStart, OnStop).

Since values in F# are immutable by default, you declare the webApp field as mutable, as you'll modify it from two
different methods (start, stop).

Listing 2-19. ASP.NET Web API Azure Worker Written in F#

type WorkerRole() =
inherit RoleEntryPoint()
let mutable webApp = None

override w.Run() =
while(true) do
Thread.Sleep(10000)
Trace.TraceInformation("Working", "Information")

override w.OnStart() =
ServicePointManager.DefaultConnectionLimit <- 12

let endpoint = RoleEnvironment.CurrentRoleInstance.InstanceEndpoints.["Default”]
let uri = sprintf "%s://%0" endpoint.Protocol endpoint.IPEndpoint
webApp <- Some(WebApp.Start(uri, fun app ->

let config = new HttpConfiguration()

config.MapHttpAttributeRoutes()

app.UselWebApi(config) |> ignore

)

base.OnStart()

override w.OnStop() =
match webApp with
| Some x -> x.Dispose() |> ignore
| None -> ()
base.OnStop()

What'’s interesting if you compare the F# sample with the C# one is that you got rid of a null check in the OnStop
methods and instead rely on an F# Option, which forces you to explicitly handle Some and None cases, as it wouldn’t
compile otherwise. This particular feature of F# can help you avoid almost all potential Nul1ReferenceExceptions,
and in itself is one of the great benefits of switching to F#.

In a couple of places you throw away the result of a given computation using |> ignore. That is because in F#
everything is an expression, whereas in those particular cases you are interested in using those as statements only.

55

http://visualstudiogallery.msdn.microsoft.com/39ae8dec-d11a-4ac9-974e-be0fdadec71b

CHAPTER 3

Routing

This chapter introduces the concepts behind ASP.NET Web API routing mechanisms. It deals with centralized routing
and direct (attribute) routing, which was introduced in version 2 of the framework.
You will learn how to do the following:

¢ Define routes using both routing engines (Recipes 3-1 and 3-2)

e Use default and optional route values, and apply routing constraints
(Recipes 3-3, 3-4, and 3-5)

e Support remote procedure call (Recipe 3-6)

e Define greedy “catch-all” routes and prevent controller methods from becoming routes
(Recipes 3-7 and 3-8)

e Apply a message handler to a specific route and use that technique to ignore certain routes
(Recipes 3-9 and 3-10)

e Approach the problem of route localization using direct routing (Recipe 3-11)
e Generate links to your routes (Recipe 3-12)

There is an ongoing debate between ASP.NET Web API developers about whether routing setup should be a central
concern (using centralized routing) or whether it should be closely tied to the resources (using attribute routing). Recipes
in this chapter will cover both scenarios, letting you decide which routing mechanism you feel more comfortable with.

3-1. Define Centralized Routes
Problem

You would like to declare all of your routes in a single place.

Solution

Define a route by calling the MapHttpRoute extension method from the HttpRouteCollectionExtensions class, on the
HttpRouteCollection, which is available off the HttpConfiguration object.

The most basic usage is to define a very generic route template, which will match all of the controllers through a
{controller} placeholder. This is shown in Listing 3-1.

57

CHAPTER 3 © ROUTING

Listing 3-1. The Default ASP.NET Web API Route and a Basic Controller

config.Routes.MapHttpRoute(
name: “"DefaultApi”,
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional }

)s

public class OrdersController : ApiController

{
public Order Get(int id)

{
}

//omitted for brevity

}

In the routeTemplate, you can define your own placeholders such as {id} in Listing 3-1. It then has to match the
name of a parameter in your action method, allowing ASP.NET Web API to extract a correct value from the URI of
the HTTP request and pass into the method. And indeed, that is the case in the Get method on the OrdersController
in Listing 3-1.

How It Works

Since its very first version, ASP.NET Web API has been using a centralized routing mechanism that’s almost identical
as that used by ASP.NET MVC.

ASP.NET Web API defines a number of variations of the MapHttpRoute method. The bare minimum required is a
route template and a route name.

public static IHttpRoute MapHttpRoute(this HttpRouteCollection routes, string name,
string routeTemplate)

In addition to declaring simple basic routes, it is also possible to pass in defaults or constraints, or set a per-route
message handler, all of which will be discussed later in this chapter. All those operations are done through the relevant
MapHttpRoute overload.

public static IHttpRoute MapHttpRoute(this HttpRouteCollection routes, string name,
string routeTemplate, object defaults)

public static IHttpRoute MapHttpRoute(this HttpRouteCollection routes, string name,
string routeTemplate, object defaults, object constraints)

public static IHttpRoute MapHttpRoute(this HttpRouteCollection routes, string name,
string routeTemplate, object defaults, object constraints, HttpMessageHandler handler)

With route defaults you are able to point specific routes to relevant controllers directly; however, such routes need
to be defined before generic routes such as the route from Listing 3-1. The reason for that is that route order matters
because a route that will handle an incoming HTTP request is selected by scanning the route collection on every
request. As soon as a first matching route template is found, the route is going to be used. Therefore, you will always
need to declare the more specific routes before the generic ones.

In self-hosting scenarios, ASP.NET Web API maintains the route collection in the form of an
IDictionary<string, IHttpRoute> inside anHttpRouteCollection class. In web hosting, ASPNET Web API also
provides extension methods for System.Web.Routing.RouteCollection so you can also define ASP.NET Web API
routes directly on that. For example,

RouteTable.Routes.MapHttpRoute("DefaultApi”, "api/{controller}")

58

CHAPTER 3 © ROUTING

This is possible because if you are hosting your Web API in the ASP.NET runtime, regardless of which extension
method you use to declare your route, it would always end up getting added to the same underlying RouteTable.
This is internally represented by a specialized subclass of HttpRouteCollection called HostedHttpRouteCollection,
which, instead of maintaining routes in a dictionary (like in self-host), forwards all route look-ups to
System.Web.Routing.RouteCollection.

ASP.NET Web AP]I, contrary to ASPNET MVC, uses HTTP verb-based dispatching to handle a request with a
controller. In other words, the framework will select an action to handle your request based on the HTTP verb.

The logic of the selection is as follows:

e The HTTP verb will be inferred from the method name if possible (i.e. PostOrder, GetById).

e The HTTP verb will be inferred from an attribute on an action (i.e. HttpPutAttribute,
HttpGetAttribute).

e Action parameters have to match those defined on the route template.

As aresult, the typical ASP.NET Web API route setup boils down to pointing to a resource, which can be called
with various HTTP verbs, rather than a specific action only. Therefore, the single initial route defined in Listing 3-1
could potentially handle all of the following requests:

e GETmyapi.com/api/orders
e POSTmyapi.com/api/invoice

e PUTmyapi.com/api/invoice/2

Note It is still possible to use RPC in ASP.NET Web API. See Recipe 3-6 for more details.

The Code

Because of the HTTP verb-based dispatching logic used by ASP.NET Web AP], unlike in ASP.NET MVC, it is very easy
to trap yourself with an AmbiguousMatchException. For example, consider a Web API service using a generic route
from Listing 3-1.

Even though the controller code shown in Listing 3-2 compiles (method signatures are unique), all three of them
could potentially handle the same GET request, such as /api/orders/1.

Listing 3-2. Bad ASP.NET Web API controller

public class BadOrdersController : ApiController

{
[HttpGet]
public Order FindById(int id)
{
//omitted for brevity
}
public Order GetById(int id)
{
//omitted for brevity
}

59

CHAPTER 3 © ROUTING

public Order Get(int id)
{

//omitted for brevity
}

On the same note, centralized routing makes it very tedious and unnatural when it comes to defining complex,
hierarchical, or nested routes. Consider the following routing requirement:

e GETmyapi.com/api/teams
e GETmyapi.com/api/teams/1
e GETmyapi.com/api/teams/1/players

With centralized routing it’s possible to contain all three methods in the same controller; however, you have to
be careful not to have routes 2 and 3 conflict with each other since both are a GET with a single ID parameter. The
correct setup is shown in Listing 3-3. A specific route pointing to the /players/segment of the URL is defined before
the generic route.

Listing 3-3. Configuring Nested Routes with Centralized Routing

public class TeamsController : ApiController

{
public Team GetTeam(int id)
{
//omitted for brevity
}
public IEnumerable<Team> GetTeams()
{
//omitted for brevity
}
public IEnumerable<Player> GetPlayers(int teamId)
{
//omitted for brevity
}
}

config.Routes.MapHttpRoute(
name: "players"”,
routeTemplate: "api/teams/{teamid}/players"”,
defaults: new { controller = "teams" }

)s

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional }

)5

60

CHAPTER 3 © ROUTING

The prevailing problem with this particular setup is that specialized routes, which handle only specific actions
in a specific controller, become artificially disconnected from the controller and get mixed up with generic route
definitions instead.

This is hardly ideal, and the bigger your application becomes, and the more complex your routing hierarchy is, the
more likely you are to struggle with the maintenance and debugging of centralized routing. Therefore, it’s often a better
option to move to direct routing instead, which is discussed in Recipe 3-2 and in general in the rest of this chapter.

3-2. Define Direct Routes
Problem

You would like to declare your routes as close to the resources (controllers, actions) as possible.

Solution

Declare your routes directly at the resource level using attribute routing. You simply annotate your actions with a
RouteAttribute, and pass it a relevant route template. The route template for attribute routing has similar semantics
to that used with centralized routing: all route parameters should be in curly braces and match those available on the
action. Route defaults, optional parameters, and constrains are all supported by direct routing, and will be discussed
later in this chapter.

[Route("api/teams/{id}")]
public Team GetTeam(int id)
{

}

//omitted for brevity

To enable attribute routing, you need to call the MapHttpAttributeRoutes extension method
(HttpConfigurationExtensions) on your HttpConfiguration at the application startup.

config.MapHttpAttributeRoutes();

How It Works

A once popular open source library called Attribute Routing became part of core ASP.NET Web API in version 2 of
the framework. It was brought in to solve a number of woes of the centralized routing mechanism as it allows you to
declare the routes as attributes directly on the action or controller.

For many developers, attribute routing (also known as direct routing) is a more natural approach than centralized
route setup, as it emphasizes a direct relationship between a Web API resource and a URI at which this resource should
be reachable over HTTP. In fact, part of the appeal of other popular .NET web frameworks, such as ServiceStack or
NancyFx, has been their ability to define routes as close to the actual resource as possible (inline with the resource).

When you call MapHttpAttributeRoutes at your application startup, you instruct ASP.NET Web API to scan all of
your controllers for any route declarations.

Ultimately, routes declared with attribute routing are not much different from centralized routing; once found,
they are added to the same route collection that centralized routing uses (see Recipe 3-1). The only difference is
that direct routes (attribute-based routes) are added to the route collection as a single composite route (an internal
SubRouteCollection type) under acommon MS_attributeroutelWebApi route key.

When processing each attribute route, the controller (HttpControllerDescriptor) or action (HttpActionDescriptor)
that the direct route is specifically pointing to will be marked as only reachable via attribute routing. This is achieved by
addinganMS_IsAttributeRouted to the Properties dictionary on either of those descriptor types.

61

CHAPTER 3 © ROUTING

Attribute routing exposes a number of hooks for customization of the routing process, which will be explored
later in this chapter. In fact, you are not forced to use just RouteAttribute to annotate your controllers and
actions with route definitions. By implementing IDirectRouteFactory, you are able to provide route definitions
through custom attributes, or even non-attribute, centralized logic. The usage of IDirectRouteFactory and
IDirectRouteProvider is discussed in Recipe 3-11 and later again in Recipe 6-8.

The Code

Contrary to centralized routing, the very nature of attribute routing, and its direct relationship with a controller and
action, make it very simple to declare sophisticated, nested routes. An example is shown in Listing 3-4.

Listing 3-4. A Sample Controller with Attribute Routing Defined on It

public class TeamsController : ApiController

{
[Route("api/teams/{id}")]
public Team GetTeam(int id)
{

}

[Route("api/teams")]
public IEnumerable<Team> GetTeams()

{
}

[Route("api/teams/{teamId}/players")]
public IEnumerable<Player> GetPlayers(int teamId)

{
}

//omitted for brevity

//omitted for brevity

//omitted for brevity

Attribute routing also allows you to declare a route prefix through RoutePrefixAttribute. It can only be declared
on a controller level, and gives you a possibility to define a common prefix for all of the routes within this controller.
Code from Listing 3-4, rewritten to use RoutePrefixAttribute, is shown in Listing 3-5. Notice that when a route prefix
is present, all of the RouteAttributes specified on the action should now use route templates with the path relative to
the prefix.

Listing 3-5. A Sample Controller with Attribute Routing and Route Prefix

[RoutePrefix("api/teams")]
public class TeamsController : ApiController

[Route("{id}")]
public Team GetTeam(int id)
{

}

//omitted for brevity

62

CHAPTER 3 © ROUTING

[Route]
public IEnumerable<Team> GetTeams()

{

}

[Route("{teamId}/players")]
public IEnumerable<Player> GetPlayers(int teamId)

{
}

//omitted for brevity

//omitted for brevity

Similarly to centralized routing, attribute routing also relies on verb-based dispatching. Therefore, due to the
naming convention (see Recipe 3-1 for more details on verb-based dispatching) all of the routes defined in
Listings 3-4 and 3-5 will only work with the HTTP GET method.

To enable support for other types of HTTP verbs, you have to add additional actions to the controller, either with
a name prefixed with that verb or annotated with a relevant HTTP verb attribute. Two types of POST actions and a
PUT action are shown in Listing 3-6. They extend your TeamsController with the ability to create a Team resource,
to create a Player resource within the context of a team (both POST), and to update a Team (PUT).

Listing 3-6. Defining Additional Actions, Supporting Other HTTP Verbs

[Route]
public HttpResponseMessage PostTeam(Team team)

{

}

[HttpPost]
[Route("{teamId}/players")]
public HttpResponseMessage AddPlayer(int teamId, Player player)

{

}

[Route("{id}")]
public HttpResponseMessage PutTeam(int id, Team team)

{
}

3-3. Set Default Route Values

Problem

//omitted for brevity

//omitted for brevity

//omitted for brevity

You want to provide default values for the parameters used in your routes.

Solution

Regardless whether you are using attribute routing or centralized routing, ASP.NET Web API makes it very easy to
define default values for a route. These are the values that will be automatically populated by the framework on every
request in case the client making the request omits them.

63

CHAPTER 3 © ROUTING

For centralized routing, the MapHttpRoute extension method accepts default values as a third parameter in the
form of an IDictionary<string, object> (also as anonymous object). The key (or property on the anonymous
object) must match the parameter name as specified in the routing template.

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "api/{controller}/{id}",
defaults: new { id = VALUE }

)s
In attribute routing, you define the default value directly inline in the route declaration.

[Route("items/{id:int=VALUE}")]
public HttpResponseMessage Get(int id) {}

Finally, for both types of routing, you can also supply the default value in the action signature itself.

public HttpResponseMessage Get(int id = VALUE) {}

How It Works

When using centralized routing, the default values declared on your route are used to hydrate the IHttpRoute object
whenever the Request.GetRouteData method is called (by your code or by the framework code) to fill in the gaps, in
case some of the parameters were omitted by the calling client.

For attribute routing, the process is the same, except there are some extra registration steps. At the start of
your application, all routing attributes are used by the framework to produce concrete RouteEntry instances; this
is done by calling the CreateRoute method on every RouteAttribute (or, more generally, IDirectRouteFactory)
found on your controllers and actions. CreateRoute will internally invoke the CreateBuilder method of the
DirectRouteFactoryContext. That operation uses an internal class called InlineRouteTemplateParser to parse the
template defined in your route attribute and produce the relevant constraints and default values out of it. After that,
the route is registered as if it was a centralized route with defaults and constraints specified.

The Code

Consider the three examples in Listing 3-7.

Listing 3-7. Sample Usage of Default Values in Routing

//centralized
config.Routes.MapHttpRoute(
name: “"DefaultApi”,
routeTemplate: "{controller}/{id}",
defaults: new { id = 100 }

)s
//attribute routing
[Route("items/{id:int=100}")]
public HttpResponseMessage Get(int id) {}

//inline
public HttpResponseMessage Get(int id = 100) {}

64

CHAPTER 3 © ROUTING

In each of the cases, the following two requests will be identical, and return the resource with the ID of 100:
e myapi.com/items/

e myapi.com/items/100

Caution Using default values can often result in very “greedy” routes. In the example above, there is no longer the
possibility to retrieve all items using a parameterless Get method.

3-4. Set Optional Route Values
Problem

You want to create routes that have optional parameters that are matched regardless of whether the client supplies
them or not.

Solution

ASP.NET Web API supports declaring optional route parameters for both centralized and attribute routing.
With centralized routing you can specify an optional parameter by giving it a default value of
RouteParameter.Optional (which is semantically equivalent to the UrlParameter.Optional from ASPNET MVC).

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "api/{controller}/{param}"”,
defaults: new { param = RouteParameter.Optional }

);

In attribute routing, you support optional parameters by suffixing them with a question mark. You then have to
specify the default value.

[Route("items/{param?}")]
public HttpResponseMessage Get(int? param = null)

How It Works

Under the hood, support for optional parameters in ASP.NET Web API is a de facto variation of default route values
support. RouteParameter, which can be seen in Listing 3-8, is actually an immutable type, implementing a null-
pattern. It is only used by the framework for comparison purposes, to determine that this particular default value is
actually representing an optional parameter.

65

CHAPTER 3 © ROUTING

Listing 3-8. Definition of RouteParameter

public sealed class RouteParameter

{
public static readonly RouteParameter Optional = new RouteParameter();
private RouteParameter()
{
}
public override string ToString()
{
return String.Empty;
}
}

On the attribute routing side of things, the parameter followed by a question mark will also be converted into a
RouteEntry having the default value of RouteParameter.Optional.

At runtime, when an incoming HTTP request is handled by the framework, HttpRoutingDispatcher will remove
all optional parameters that do not have a value from the route data. This is necessary to support both /resource and
/resource/{optionalParameter}.

The Code

Listing 3-9 shows the usage of optional route values with attribute routing on an HTTP resource allowing the client to
apply basic pagination.
Listing 3-9. Usage of Optional Parameters with Attribute Routing

[Route("orders/{skip?},{take?}")]
public HttpResponseMessage GetFiltered(int? skip = null, int? take = null)

{
var query = orders.AsQueryable();
if (skip.HasValue)
{
query = query.Skip(skip.Value);
if (take.HasValue)
{
query = query.Take(take.Value);
}
return Request.CreateResponse(HttpStatusCode.OK, query);
}

The same route, also with default parameters, using centralized routing is defined as shown in Listing 3-10.

66

CHAPTER 3 © ROUTING

Listing 3-10. Usage of Optional Parameters with Centralized Routing

config.Routes.MapHttpRoute(
name: "OrdersFilter",
routeTemplate: "orders/{skip},{take}}",
defaults: new {skip = RouteParameter.Optional, take = RouteParameter.Optional}

);

3-5. Set Route Constraints
Problem

You need to restrict the values of some of the route parameters.

Solution

ASP.NET Web API allows you to work with route constraints through the IHttpRouteConstraint interface.
IHttpRouteConstraint is applicable to both centralized and direct routing.

The framework ships with 18 implementations of this interface, allowing you to provide most common constraint
types, such as restricting a route parameter to a relevant length, ensuring its value falls into a predefined range, or
restricting it to being a specific data type. You can also introduce custom logic into route constraints by implementing
the IHttpRouteConstraint interface yourself.

How It Works

IHttpRouteConstraint, an HTTP route constraint interface (definition shown in Listing 3-11), exposes a single
Match method, which takes an HttpRequestMessage, IHttpRoute instance, parameter name, dictionary of route
values, and the HttpRouteDirection (resolution or generation), and also ensures that this route should be matched
based on the logic required by your application.

Listing 3-11. Definition of IHttpConstraint

public interface IHttpRouteConstraint

{

bool Match(HttpRequestMessage request, IHttpRoute route, string parameterName,
IDictionary<string, object> values, HttpRouteDirection routeDirection);

Constraints can also be compounded together using CompoundRouteConstraint, which takes a collection of
IHttpRouteConstraint through its constructor. Table 3-1 provides an overview of all of the built-in constraints and
shows their basic usage example.

67

CHAPTER 3 © ROUTING

Table 3-1. All of the IHttpRouteConstraints Available Out of the Box in ASPNET Web API

Class Direct Routing Centralized Routing Example Direct Routing Example
AlphaRouteConstraint Alpha new AlphaRouteConstraint() {param:alpha}
BoolRouteConstraint Bool new BoolRouteConstraint() {param:bool}
CompoundRouteConstraint - new CompoundRouteConstraint ({text:alpha:

new List<IHttpRouteConstraint> { maxlength(5)}

new AlphaRouteConstraint(),

new MaxLengthRouteConstraint(5) })
DateTimeRouteConstraint datetime new DateTimeRouteConstraint() {param:datetime}
DecimalRouteConstraint decimal new DecimalRouteConstraint() {param:decimal}
DoubleRouteConstraint double new DoubleRouteConstraint() {param:double}
FloatRouteConstraint float new FloatRouteConstraint() {param:float}
GuidRouteConstraint guid new GuidRouteConstraint() {param:guid}
IntRouteConstraint int new IntRouteConstraint() {param:int}
LengthRouteConstraint length new LengthRouteConstraint(10) {param:1length(10)}

new LengthRouteConstraint(10,20) {param:1length(10,20)}
LongRouteConstraint long new LongRouteConstraint() {param:long}
MaxLengthRouteConstraint maxlength new MaxLengthRouteConstraint(10) {param:maxlength(10)}
MaxRouteConstraint max new MaxRouteConstraint(1000) {param:max(1000)}
MinLengthRouteConstraint minlength new MinLengthRouteConstraint(3) {param:minLength(3)}
MinRouteConstraint min new MinRouteConstraint(1000) {param:min(1000)}
OptionalRouteConstraint - RouteParameter.Optional {param?}
RangeRouteConstraint range new RangeRouteConstraint(100,200) {param:

range(100,200)}

RegexRouteConstraint regex new RegexRouteConstraint(""\w+ {param:regex("\w+

([-+. ") *@\w+ ([-« T\w) ¥\ o \w+ ([-+- " 1\w+) *@\w+

([--1\w+)*)") ([Dw)*

No\w+([- T\w+)*) 3

HttpMethodConstraint - new HttpMethodConstraint N/A

(HttpMethod.Get)

For attribute routing, the mapping between the inline version of the constraint and the actual Type is provided
by DefaultInlineConstraintResolver. When you call MapHttpAttributeRoutes, ASPNET Web API will actually
use that resolver to convert the inline constraints to relevant IHttpRouteConstraint instances. To introduce
certain constraint processing customizations, you can either modify the DefaultInlineConstraintResolver or
implement the entire IInlineConstraintResolver yourself. In either case, you will have to pass the instance to the
MapHttpAttributeRoutes method (there is an overload that allows this).

OptionalRouteConstraint is used to provide the optional parameter functionality, as discussed in Recipe 3-4,
in conjunction with any other regular constraint. OptionalRouteConstraint will only evaluate the constraint if the
value of the parameter is not RouteParameter.Optional.

68

CHAPTER 3 © ROUTING

The Code

For centralized routes, constraints are passed as a third parameter of the MapHttpRoute method. Similarly to defaults,
discussed in Recipe 3-3, they are expected to be IDictionary<string, object>, butsince the intention of the
framework authors was to allow you to pass an anonymous object too, the actual type in the signature is simply an
object. The name of the constrained parameter (dictionary key or property of the anonymous object) must be the
same as in the route template and in the action signature.

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "orders/{text}",
constraints: new { text = new AlphaRouteConstraint() },
defaults: null

)5

With centralized routing, you can also define regular expression constraints inline as string, without having to use
any IHttpRouteConstraint implementation. In the following example, the id is constrained to be a digit by an inline
regular expression:

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "size/{id}",
constraints: new { id = "\d+" },
defaults: null

);

Centralized routing can also accept routing constraints that constraint HTTP methods. This is done through a
predefined httpMethod key and through the use of HttpMethodConstraint.

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "size/{id}",
constraints: new { httpMethod = new HttpMethodConstraint(HttpMethod.Get) },
defaults: null

);
For direct routes, constraints are specified using the colon after the parameter name.

[Route("orders/{text:alpha}")]
public HttpResponseMessage Get(string text)

In order to combine constraints together, for centralized routing you need to wrap them in the
CompoundRouteConstraint.

config.Routes.MapHttpRoute(
name: "DefaultApi”,
routeTemplate: "orders/{text}",
constraints: new { text = new CompoundRouteConstraint (new List<IHttpRouteConstrainty
{new AlphaRouteConstraint(), new MaxLengthRouteConstraint(5) } },
defaults: null

)5

69

CHAPTER 3 © ROUTING

For attribute routing, you can simply chain different constraints types with the colon; the framework will

internally build up a CompoundRouteConstraint out of that.

[Route("orders/{text:alpha:maxlength(5)}")]
public HttpResponseMessage Get(string text)

A sample custom constraint, ensuring that the parameter is a valid email format, is shown in Listing 3-12. Since
the route values are IDictionary<string, object>, there is a need to cast to the expected Type (in this case a string)

before validating the constraint.

Listing 3-12. A Custom IHttpRouteConstraint, Validating if the Paramater Is a Valid Email Format

public class EmailRouteConstraint : IHttpRouteConstraint

{

public bool Match(HttpRequestMessage request, IHttpRoute route, string parameterName,
IDictionary<string, object> values, HttpRouteDirection routeDirection)

{

object value;

if (values.TryGetValue(parameterName, out value) && value != null)

{

}

var stringValue = value as string;
if (stringValue == null) return false;

try

{
var email = new MailAddress(stringValue);
return true;

}

catch (FormatException)

{
return false;

}

return false;

You can use this constraint with centralized routing straight away like all of the built-in route constraints.

config.Routes.MapHttpRoute(
name: "Email",
routeTemplate: "{controller}/email/{text}",
constraints: new { text = new EmailRouteConstraint() },
defaults: null

);

70

CHAPTER 3 © ROUTING

However, with attribute routing, you use a short alias instead, and you probably noticed that it was not defined
anywhere in the EmailRouteConstraint class. That’s because this mapping between the shorthand name and a
constraint Type is done against the DefaultInlineConstraintResolver that ASP.NET Web API uses to resolve the
constraints, so you'll need to perform this additional step:

var constraintResolver = new DefaultInlineConstraintResolver();
constraintResolver.ConstraintMap.Add("email", typeof(EmailRouteConstraint));
config.MapHttpAttributeRoutes(constraintResolver);

With this in place, you can now use the email constraint just like all the default framework constraints.

[Route("orders/client/{text:email}")]
public HttpResponseMessage GetByClient(string text)

Caution Without that extra mapping step, the constraint would not only not have any effect, but the entire attribute
routing would break for your ASP.NET Web API.

3-6. Define Remote Procedure Call Style Routes
Problem

You want to have RPC (Remote Procedure Call) routes in your ASP.NET Web AP], instead of the default convention of
verb-based dispatching.

Solution

When using centralized routing you can extend your route template to include the {action} token, which will require
the client to specifically call a server-side method.

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "api/{controller}/{action}/{id}",
defaults: new { id = RouteParameter.Optional }

)
In this case, the client now has to call your HTTP endpoints in the following matter:
e myapi.com/api/orders/getall
e myapi.com/api/orders/getbyid/1

With attribute routing, since you are in direct control over the route appearance, you can just define such inline
routes to match the name of the action method.

//the controller is OrdersController
[Route("orders/getbyid/{id}")]

public HttpResponseMessage Get(int id)
{

}

//omitted for brevity

71

CHAPTER 3 © ROUTING

[Route("orders/getall")]
public HttpResponsesMessage GetAll()

{
}

//omitted for brevity

Attribute routing also supports the {action} placeholder.

[RoutePrefix("direct")]
[Route("items/{action}")]
public class ItemsController : ApiController

{
}

//omitted for brevity

Alternatively, it is possible to define a custom IDirectRouteFactory that will infer the controller and action
name automatically for you, and only require you to pass the parameter part of the route template.

[RpcRoute("{id}")]
public HttpResponseMessage Get(int id)

{

//omitted for brevity
}
How It Works

ApiControllerActionSelector is a Web API service that’s responsible for selecting an action on the controller that will
process the current HTTP request. Typically, an action is selected according to RESTful routing principles based on

the HTTP verb (discussed already in Recipe 3-1). However, the selection process is relying on the RouteData too, and if
RouteData contains an entry for the {action} placeholder, it is given precedence over the verb-based action selection.

Remember that introducing RPC routing will not prevent ASP.NET Web API from respecting HTTP verbs.
Therefore, your remotely callable actions will still only be accessible through the HTTP verb they are prefixed with or
annotated with via an attribute. If neither of those two conditions are met, then Web API will automatically assume
that such an action is only a POST action.

When using the default ApiControllerActionSelector, you are not able to combine RPC and RESTful routing in the
same controller; trying to do that will result in an ambiguous match exception. The reason is quite simple: imagine having
two actions in the same controller, both responding to a GET request, except one is intended for RPC invocation and one
is intended for RESTful invocation. ApiControllerActionSelector has no way of identifying which one is supposed to be
RPC and treats both of them as equally good matches for a RESTful route, resulting in an ambiguous result.

For such advanced usage scenarios, the whole action selection process is customizable as it is interface based.
You may implement your own IHttpActionSelector (Listing 3-13) and register it against HttpConfiguration.

Listing 3-13. Definition of IHttpActionSelector

public interface IHttpActionSelector

{
HttpActionDescriptor SelectAction(HttpControllerContext controllerContext);
ILookup<string, HttpActionDescriptor> GetActionMapping(HttpControllerDescriptor
controllerDescriptor);

}

72

CHAPTER 3 © ROUTING

An extensive example of building a custom IHttpActionSelector and combining RESTful and RPC dispatching
in a single controller for centralized routing is available in a blog post at www. strathweb.com/2013/01/magical-web-
api-action-selector-http-verb-and-action-name-dispatching-in-a-single-controller/

The Code

In centralized routing, the mere introduction of the {action} route segment will force ASP.NET Web API to treat
those routes as RPC. You can even use {action} in route templates without the {controller} segment, as long as
the controller will get provided by default. Similarly, {action} can be supplied its own default value too. An example
setup of RPC is shown in Listing 3-14.

Listing 3-14. Example Setup of Centralized RPC Routing

config.Routes.MapHttpRoute(

name: "LatestOrder",

routeTemplate: "api/orders/getlatestorder"}",

defaults: new { controller = "Orders", action = "GetlLatestOrder" }
)5
config.Routes.MapHttpRoute(

name: "Orders",

routeTemplate: "api/orders/{action}/{id}",

defaults: new { controller = "Orders"”, id = RouteParameter.Optional }
)5
config.Routes.MapHttpRoute(

name: "DefaultApi",

routeTemplate: "api/{controller}/{action}/{id}",

defaults: new { id = RouteParameter.Optional }

)5

The definition of a custom RpcRouteAttribute, an implementation of IDirectRouteFactory, which can
be used for RPC-enabling attribute routing, is shown in Listing 3-15. In the CreateRoute method, you can use
DirectRouteFactoryContext to access the relevant HttpActionDescriptor and HttpControllerDescriptor, from
which you can pull out action name and controller name information. Those can then be arbitrarily used as part of
the route creation, effectively forcing RPC-style routing through attribute routing.

Listing 3-15. Definition of RpcRouteAttribute

public class RpcRouteAttribute : Attribute, IDirectRouteFactory

{
public RpcRouteAttribute() : this(string.Empty) {}

public RpcRouteAttribute(string template)
{

}

Template = template;

public string Name { get; set; }
public int Order { get; set; }

public string Template { get; private set; }

73

http://www.strathweb.com/2013/01/magical-web-api-action-selector-http-verb-and-action-name-dispatching-in-a-single-controller/
http://www.strathweb.com/2013/01/magical-web-api-action-selector-http-verb-and-action-name-dispatching-in-a-single-controller/

CHAPTER 3 © ROUTING

RouteEntry IDirectRouteFactory.CreateRoute(DirectRouteFactoryContext context)
{
var action = context.Actions.FirstOrDefault();
var template = string.Format("{0}/{1}", action.ControllerDescriptor.ControllerName,
action.ActionName);
if (!string.IsNullOrWhiteSpace(Template))

template += "/" + Template;
}

var builder = context.CreateBuilder(template);

builder.Name = Name;
builder.Order = Order;
return builder.Build();

If you compare this RpcRouteAttribute to the built-in RouteAttribute, you'll immediately notice that the
semantics of the Template property are now slightly different. In normal RouteAttribute, Template represents the
entire route (or a route template, minus the route prefix segment), while in your RpcRouteAttribute, Template
represents only the URL part after the controller and action names. Therefore, the usage is as shown in Listing 3-16.

Listing 3-16. Example Usage of RpcRouteAttribute

[RoutePrefix("direct")]
public class ItemsController : ApiController

{
private static List<Item> items = new List<Item>
{
new Item {Id = 1, Name = "Filip"},
new Item {Id = 2, Name = "Not Filip"}
b
[RpcRoute("{id:int}")]
public Item Get(int id)
{
var item = items.FirstOrDefault(x => x.Id == id);
if (item == null) throw new HttpResponseException(HttpStatusCode.NotFound);
return item;
}
[RpcRoute]
public IEnumerable<Item> GetAll()
{
return items;
}
}

74

CHAPTER 3 © ROUTING

3-7. Create Catch-all Routes
Problem

You want to define a single route that will catch all of the requests regardless of the type and number of route
parameters passed.

Solution

By preceding a parameter in the route template with an asterisk, for example {*params}, you are able to catch all of
the requests, as long as the request URL matches the rest of the route template too. This technique is applicable to
both centralized and attribute routing.

How It Works

If the entire route template is just { *params }, then the whole relative part of the request URL is passed to the action as
a single string parameter. It can then be parsed or processed inside the action by hand.

In case there are some other route template segments preceding the catch-all parameter, then those are matched
first, and afterwards the remaining portion of the URL is passed to the action as a string parameter.

Caution Since a parameter with an asterisk represents a catch-all segment, it must also be the last segment in
your route template. For example {*params}/{id} does not make sense, as the value of id will never be read correctly
because {*params} will greedily absorb all of the parameters.

These types of catch-all routes are typically needed when using ASP.NET Web API as a proxy that simply forwards
the calls to some other system, or when trying to punch holes in the routing setup (this will be discussed in Recipe 3-10).
It is also useful when you are allowing a client to compose URLs containing rich queries on the client side.

The Code

Listing 3-17 shows examples of catch-all routes for both centralized routing and attribute routing.

Listing 3-17. Catch-all ASP.NET Web API Routes

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "{*params}"

);
public class ProxyController : ApiController
{
[Route("{*params}")]
public HttpResponseMessage Get(string params)
{
//omitted for brevity
}
}

75

CHAPTER 3 © ROUTING
In both cases, the routes are infinitely greedy because they will handle all possible requests to your Web API
services. For example,
e GET myapi.com/1
e GET myapi.com/hello
e GET myapi.com/www.google.com
e GET myapi.com/monday/filip/192.5
To allow coexistence of catch-all routes and regular routes, a common approach is to hide them behind a specific
prefix. Consider the example from Listing 3-17 in a slightly modified version shown in Listing 3-18.
Listing 3-18. Catch-all ASP.NET Web API Routes—But Only for Requests for proxy/*

config.Routes.MapHttpRoute(
name: “"DefaultApi”,
routeTemplate: "proxy/{*params}"

)s
public class ProxyController : ApiController
{
[Route("proxy/{*params}")]
public HttpResponseMessage Get(string params)
{
//omitted for brevity
}
}

With this change, both of the route definitions can still catch all kinds of requests, but only as long as the relative
part of the request URL starts with proxy, for example, myapi.com/proxy/www.google.com. All other types of requests
can still be correctly handled by other controllers in your Web API.

3-8. Prevent Controller Methods from Inadvertently Becoming
Web API Endpoints

Problem

You have a public method on a controller that should not be considered an action by ASP.NET Web API.

Solution

ASP.NET Web API, when operating both in regular HTTP-verb based dispatching mode and in RPC mode will rely on
a convention for finding actions on a controller. By default, every public method on a controller will be considered an
action. To prevent a public method from becoming an action, you have to decorate it with a NonActionAttribute.

How It Works

NonActionAttribute (see Listing 3-19) is a no-op class which itself doesn’t do anything and is used merely as a
marker.

76

http://www.google.com/
http://www.google.com/

CHAPTER 3 © ROUTING

Listing 3-19. Definition of NonActionAttribute

[AttributeUsage(AttributeTargets.Method, AllowMultiple = false, Inherited = true)]
public sealed class NonActionAttribute : Attribute

{

}

ApiControllerActionSelector, when finding valid candidates for actions on a controller internally performs the
checks shown in Listing 3-20: it treats all public methods on the controller as potential actions, except for those that
are special ones (i.e. constructors), that are declared on ApiController, IHttpController or that are decorated with
NonActionAttribute.

Listing 3-20. ApiControllerActionSelector Filtering Rules for Action Selection

private static bool IsValidActionMethod(MethodInfo methodInfo)

{
if (methodInfo.IsSpecialName)
{
return false;
}
if (methodInfo.GetBaseDefinition().DeclaringType.IsAssignableFrom(TypeHelper.ApiControllerType))
{
return false;
}
if (methodInfo.GetCustomAttribute<NonActionAttribute>() != null)
{
return false;
}
return true;
}

Caution Since this logic exists internally in ApiControllerActionSelector, if you ever go ahead and implement
your own IHttpActionSelector, you will have to ensure that similar logic exists there too.

ASP.NET Web API wraps every action candidate in a ReflectedHttpActionDescriptor class, which, among other
things, is responsible for finding out which HTTP verb the action should handle. This is inferred from the method
name or from a relevant attribute (HttpGetAttribute, HttpPostAttribute, etc.) that the method might be decorated
with. If an action’s name starts with a name of one of the major HTTP verbs (GET, POST, PUT, DELETE), ASP.NET Web
API will consider this action suitable to handle those relevant types of HTTP requests.

Otherwise, such a method will be automatically given a capability of handling POST requests only. This is very
important, and often overlooked by developers, who think that if they don’t prefix their method name with a “Post’, it
will not be callable from the client side!

77

CHAPTER 3 © ROUTING

Solution

Listing 3-21 shows three action methods. The first one will be used by ASP.NET Web API to handle GET requests,
and the second one will be used to handle POST requests (due to the lack of hint about any HTTP verb, POST is
used by default). Finally, the third method is explicitly excluded from being treated as an action with the use of
NonActionAttribute.

Listing 3-21. Example Usage of NonActionAttribute

//action considered relevant for GET
public string GetCustomer()
{

//omitted for brevity

}

//action considered relevant for POST
public string ProcessCustomer()

{
//omitted for brevity

}

//not an action

[NonAction]

public string GetCustomer()
{

//omitted for brevity
}

3-9. Configure Route-Specific Message Handlers
Problem

You would like to restrict a message handler to only run against a specific route, rather than for every request.

Solution

A lot of ASP.NET Web API functionalities are built around message handlers. The real power of them is that they run
globally and provide an easy mechanism for globally addressing some of the application concerns (such as security).
However, there are situations where you'd like to use a handler to apply specific behavior to only a selected portion of
an application.

It is possible to configure a message handler (DelegatingHandler) on a per-route basis, rather than
registering globally in an HttpConfiguration object. There is an overload of the MapHttpRoute method in
HttpRouteCollectionExtensions that allows you to do that.

public static IHttpRoute MapHttpRoute(this HttpRouteCollection routes, string name, string
routeTemplate, object defaults, object constraints, HttpMessageHandler handler);

Note You can only do this for centralized routes (not when using attribute routing).

78

CHAPTER 3 © ROUTING

How It Works

In the Web API pipeline, the additional per-route handler kicks in after all global message handlers run and just prior
to HttpControllerDispatcher. A service called HttpRoutingDispatcher is responsible solely for recognizing whether
a given route has a specific handler attached to it. If that’s the case, the request will be handed off to that handler;
otherwise, the processing continues normally towards the dispatching of controllers.

Route-specific handlers need to specify an InnerHandler that will take over afterwards. You have to either plug
in another route-specific handler there, or hand back the request to the HttpControllerDispatcher, as shown in
Listing 3-22. Using this technique, you could chain as many handlers on this route as you want, as long as you plug the
HttpControllerDispatcher at the end; otherwise the request will never be able to reach any controller.

Listing 3-22. Applying a Per-Route Message Handler

config.Routes.MapHttpRoute(
name: "DefaultApi",
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional },
constraints: null,
handler: new MyHandler() { InnerHandler = new HttpControllerDispatcher(config) }

);

You can only imagine the amount of flexibility this gives developers, especially in authentication-related
situations where only specific routes have to be secured with some sort of an authentication mechanism
(which would often be handled in Web API by message handlers).

The Code

Suppose you need to log all traffic against the routes /api/[something] butnot /api/public/[something]. Asa
result, you need to have a message handler to apply only to a specific route, rather than globally to every request.
To begin with, let’s take a simple API request logging handler, such as the one in Listing 3-23.

Listing 3-23. A Logging Message Handler That Will Be Applied to a Specific Route Only

public class Repository

{
}

public static readonly List<string> Log = new List<string>();

public class WebApiUsageHandler : DelegatingHandler
{

protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
CancellationToken cancellationToken)
{ var apikey = request.GetQueryString("apikey");
if (!string.IsNullOrWhiteSpace(apikey))
Repository.Log.Add(string.Format("{0} {1} {2}", apikey, request.Method, request.RequestUri));

var result = await base.SendAsync(request, cancellationToken);
Repository.Log.Add(string.Format("{0} {1}", apikey, result.StatusCode));

79

CHAPTER 3 © ROUTING

return result;

}

return await base.SendAsync(request, cancellationToken);

The actual implementation of the request/response logging is not important here; in this case an in-memory
repository is just fine. You are really interested only in the mechanism that will allow you to apply this handler to
specific routes. As mentioned, you do that against the ASPNET Web API HttpConfiguration object, as shown in
Listing 3-24.

Listing 3-24. Registering a Regular Default Route and a Route with a Handler Attached to It

config.Routes.MapHttpRoute(
name: "PublicDefaultApi”,
routeTemplate: "api/public/{controller}/{id}",
defaults: new { id = RouteParameter.Optional }

)5

config.Routes.MapHttpRoute(
name: "PrivateDefaultApi”,
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional },
constraints: null,
handler: new WebApiUsageHandler() {
InnerHandler = new HttpControllerDispatcher(config)
}

)s
If you run your application now,

e All/api/public/[something] routes do notlog their requests/responses.

e All/api/[something] routes log their requests/responses because the handler executes only
for these routes.

3-10. Ignore Routes
Problem

You have defined centralized routes that are very greedy, but you need to allow specific requests to pass through.
Therefore, you'd like to ignore certain routes.

Solution

ASP.NET Web API provides a StopRoutingHandler, which is a message handler that you can attach to a specific route
to force Web API to ignore it. The handler is part of System.Web.Http and was introduced into Web API with the 2.1
release. The presence of the StopRoutingHandler handler on a specific route forces HttpRoutingDispatcher to treat
that route as non-existing.

80

CHAPTER 3 © ROUTING

Note ASPNET MVC has its own version of a StopRoutingHandler (located in System.Web). If you are running
ASP.NET Web API on top of a full ASP.NET runtime and have access to System.Web assembly, the MVC handler works for
Web API too.

How It Works

It is common to look at ignoring routes if ASP.NET Web API is greedily catching the types of requests it should not
process. These could be requests to static files that must be handled by the underlying web server, or, in case you are
running an OWIN pipeline, calls designated to be handled by other OWIN middleware.

Note OWIN middleware processing is sequential, so if your ASP.NET Web API is registered first in the OWIN pipeline,
you may often find a need to “punch holes” in the ASP.NET Web API routing by applying route ignoring.

HttpRoutingDispatcher, mentioned already in Recipe 3-9, is a specialized message handler that is responsible
for inspecting the IHttpRoute of the route that was matched for the current request, and then delegating the
processing to HttpControllerDispatcher. HttpRoutingDispatcher is being called by the HttpServer.

HttpRoutingDispatcher will check if the route has a per-route handler attached to it, and if it does and if it is of
StopRoutingHandler type, it will treat the request as if there was no route matched for the request. This logic, from the
ASP.NET We API source code, is highlighted in Listing 3-25.

Listing 3-25. Excerpt from Web API Source Code, Showing How StopRoutingHandler Is Used to Treat Matched
Routes as If They Were Not Found

protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken
cancellationToken)
{

IHttpRouteData routeData = request.GetRouteData();

if (routeData == null)

{
routeData = _configuration.Routes.GetRouteData(request);
if (routeData != null)
{
request.SetRouteData(routeData);
}
}

if (routeData == null || (routeData.Route != null && routeData.Route.Handler is
StopRoutingHandler))

{
request.Properties.Add(HttpPropertyKeys.NoRouteMatched, true);
return Task.FromResult(request.CreateErrorResponse(
HttpStatusCode.NotFound,
Error.Format(SRResources.ResourceNotFound, request.RequestUri),
SRResources.NoRouteData));
}

81

CHAPTER 3 © ROUTING

routeData.RemoveOptionalRoutingParameters();

var invoker = (routeData.Route == null || routeData.Route.Handler == null) ?
_defaultInvoker : new HttpMessageInvoker(routeData.Route.Handler, disposeHandler: false);
return invoker.SendAsync(request, cancellationToken);

The Code

In order to configure route ignoring in your ASP.NET Web AP], you can use one of the two syntax constructs.

The first one is similar to the example from Recipe 3-9, as it encompasses registering StopRoutingHandler as a
per-route message handler for the route you wish to ignore. An example of that is shown in Listing 3-26. In that case,
all requests matching the /content/* pattern will pass through Web API, while the rest will be caught by the greedy
/{controller}/{id} generic route definition.

Listing 3-26. Ignoring Routes by Manually Attaching a StopRoutingHandler
config.Routes.MapHttpRoute("Content", "content/{*params}", null, null, new StopRoutingHandler());
config.Routes.MapHttpRoute("DefaultApi”, "{controller}/{id}", new { id = RouteParameter.Optional });

A slightly simplified option is to use the IgnoreRoute extension method from the
HttpRouteCollectionExtensions class. Under the hood, it does exactly the same thing: registers the specified route
with the StopRoutingHandler attached to it. The example from Listing 3-26, converted to using the IgnoreRoute
extension method, is shown in Listing 3-27.

Listing 3-27. Ignoring Routes by Using the IgnoreRoute Extension Method

config.Routes.IgnoreRoute("Content", "content/{*params}");
config.Routes.MapHttpRoute("DefaultApi”, "{controller}/{id}", new { id = RouteParameter.Optional });

3-11. Localize Routes
Problem

You would like to be able to easily localize your routes to the different language versions that your application supports.

Solution

There are a number of ways one could go about implementing localized routing in ASP.NET Web API. Probably the
most convenient approach is to utilize direct routing, as it provides two very useful hooks for plugging in custom
logic that can extend the default route declaration and their runtime registration: IDirectRouteFactory and
IDirectRouteProvider.

You can use IDirectRouteFactory to create a custom attribute that you'll use to annotate your actions with
routes. In there, you can provide localization-aware logic that should be used when building a RouteEntry. You can
even use that to inject culture-specific DataTokens into the route.

82

CHAPTER 3 © ROUTING

How It Works

IDirectRouteProvider gives you a possibility to customize the logic that'’s responsible for harvesting route attributes from
the actions and controllers at the start of your ASP.NET Web API solution (when you call MappHttpAttributeRoutes).
For example, you can trick ASP.NET Web API into thinking that the action is annotated with more route attributes
than it actually is, which is perfect for localization, as you end up only needing a single route attribute on an action at
compile time, but at runtime a number of routes, one for each language, can get registered.

As is often the case for ASP.NET Web API development, while IDirectRouteProvider is a simple interface,
itis complex in terms of functionality, so it’s typically more convenient to extend its default implementation,
DefaultDirectRouteProvider, which contains a number of convenient virtual methods that can be overridden, than
to implement it from scratch.

IDirectRouteFactory allows you to create custom attributes that can be consumed by ASP.NET Web API
attribute routing engine as route declarations in place of the default RouteAttribute (that one is sealed so it cannot
be extended).

In fact, a class implementing IDirectRouteFactory doesn’t even have to be an Attribute, so theoretically you
could build an “attribute routing” solution without using attributes at all (!), and rely, for example, on a centralized
mechanism of IDirectRouteFactory assignment, and thus, route declaration.

Recipe 6-8, where you'll implement ASP.NET Web API versioning, will go into further details regarding working
with IDirectRouteFactory.

IDirectRouteProvider is an important extensibility point, where custom logic responsible for converting
HttpControllerDescriptor and its list of HttpActionDescriptor, into a collection of RouteEntry, can be provided.
The default implementation, DefaultDirectRouteProvider, splits up the process into three steps:

e Retrieving IReadOnlyCollection<IDirectRouteFactory> from a controller
e Retrieving IReadOnlyCollection<IDirectRouteFactory> from an action

e Converting them into IReadOnlyCollection<RouteEntry> that originated from a controller
and IReadOnlyCollection<RouteEntry> that originated from an action.

This is very convenient because you can override each and every step (each has a corresponding virtual method).
All of the RouteEntries gathered in that process are later reconciled together and registered against your Web API.

Definitions (outlines) of both IDirectRouteFactory and IDirectRouteProvider interfaces, as well as the
DefaultDirectRouteProvider, are shown in Listing 3-28.

Listing 3-28. Definitions of IDirectRouteFactory, IDirectRouteProvider, and DefaultDirectRouteProvider

public interface IDirectRouteFactory

{
}

RouteEntry CreateRoute(DirectRouteFactoryContext context);

public interface IDirectRouteProvider

{

IReadOnlyCollection<RouteEntry> GetDirectRoutes(HttpControllerDescriptor controllerDescriptor,
IReadOnlyCollection<HttpActionDescriptor> actionDescriptors, IInlineConstraintResolver
constraintResolver);

}

public class DefaultDirectRouteProvider : IDirectRouteProvider

{
public DefaultDirectRouteProvider();

83

CHAPTER 3 © ROUTING

public IReadOnlyCollection<RouteEntry> GetActionDirectRoutes(HttpActionDescriptor
actionDescriptor, IReadOnlyCollection<IDirectRouteFactory> factories, IInlineConstraintResolver
constraintResolver);

public virtual IReadOnlyCollection<RouteEntry> GetDirectRoutes(HttpControllerDescri
ptor controllerDescriptor, IReadOnlyCollection<HttpActionDescriptor> actionDescriptors,
IInlineConstraintResolver constraintResolver);

protected virtual IReadOnlyCollection<IDirectRouteFactory>
GetActionRouteFactories(HttpActionDescriptor actionDescriptor);

protected virtual IReadOnlyCollection<RouteEntry>
GetControllerDirectRoutes(HttpControllerDescriptor controllerDescriptor,
IReadOnlyCollection<HttpActionDescriptor> actionDescriptors, IReadOnlyCollection<IDirectRouteFactor
y> factories, IInlineConstraintResolver constraintResolver);

protected virtual IReadOnlyCollection<IDirectRouteFactory>
GetControllerRouteFactories(HttpControllerDescriptor controllerDescriptor);

protected virtual string GetRoutePrefix(HttpControllerDescriptor controllerDescriptor);

The Code

Supporting localization can take many shapes or forms and it can also become a very complex solution, depending on
your requirements. The approach used in this recipe is adequate to the nature of the recipe format; it is simplified, but
it's a good foundation for being further extended and adapted to your needs.

Let’s start by assuming that your route translation repository will take a format of a Dictionary<string,
Dictionary<string, string>>, where the key is the route name, and the value is a dictionary composed of a key
representing the language and a value representing the translated route. For convenience, you'll store all of the
translations in a static property inside your custom IDirectRouteFactory.

The implementation of the IDirectRouteFactory, LocalizedRouteAttribute, is shown in Listing 3-29. It
mirrors the look and structure of RouteAttribute, with three notable additions: the Culture property is present,
the DataTokens entry “culture” is being added to every instance of a RouteEntry produced from this attribute,
and finally there is a specialized GetLocalizedVersions method. It is responsible for creating instances of the
LocalizedRouteAttribute for the current route that are relevant for all of the languages found in the localization
dictionary. This way you only need to annotate your actions with LocalizedRouteAttribute once, and a route for
each language is automatically registered.

Listing 3-29. LocalizedRouteAttribute, as a First Step to Supporting Localized Routes

public class LocalizedRouteAttribute : Attribute, IDirectRouteFactory
{

public static Dictionary<string, Dictionary<string, string>>Routes = new Dictionary<string,
Dictionary<string, string>>();

public IEnumerable<lLocalizedRouteAttribute> GetlLocalizedVersions()

{
if (string.IsNullOrWhiteSpace(Name)) yield break;

84

CHAPTER 3 © ROUTING

Dictionary<string, string> languageMap;
if (Routes.TryGetValue(Name, out languageMap))

{
foreach (var entry in languageMap)
{
yield return new LocalizedRouteAttribute(entry.Value) { Culture = entry.Key};
}
}
}
public LocalizedRouteAttribute(string template)
{
Template = template;
}

public string Culture { get; set; }

public string Name { get; set; }

public int Order { get; set; }

public string Template { get; private set; }

RouteEntry IDirectRouteFactory.CreateRoute(DirectRouteFactoryContext context)

{

var builder = context.CreateBuilder(Template);

builder.Name = Name;

builder.Order = Order;

builder.DataTokens = new Dictionary<string, object>();
builder.DataTokens["culture"] = Culture ?? "en-US";
return builder.Build();

Note that LocalizedRouteAttribute and its static Routes dictionary containing translations rely on a route Name
as a key, which means you'll need to define a name for every route you have. Alternatively, you could just use the
route template as a key as well.

Another thing worth emphasizing is that in this solution, the assumption is that the default route language/culture
is en-US. That is represented automatically by the route template defined directly on an action, so the dictionary of
translations doesn’t need to contain that version. Again, it’s totally up to you how you choose to handle this.

By populating the DataTokens dictionary with the correct culture entry, you now have a very convenient hint
that can facilitate the process of setting the relevant locale (Thread.Current.CurrentCulture) for your Web API
requests. This can be done in any Web API component, such as a message handler, as long as the route has already
been matched. There, you could retrieve the locale information from the RouteData DataTokens using the
Request.GetRouteData method.

The next step is to introduce a custom IDirectRouteProvider, which will correctly harvest
IDirectRouteFactory from actions (for simplicity, I am skipping controller-level declared routes in this example, but,
through analogy, you can easily introduce that yourself). This is shown in Listing 3-30.

85

CHAPTER 3 © ROUTING

Listing 3-30. LocalizedDirectRouteProvider, Enabling Translated Routes

public class LocalizedDirectRouteProvider : DefaultDirectRouteProvider
{

protected override IReadOnlyCollection<IDirectRouteFactory>
GetActionRouteFactories(HttpActionDescriptor actionDescriptor)

{
var routeAttributes = base.GetActionRouteFactories(actionDescriptor).ToList();
foreach (var directRouteFactory in routeAttributes.Where(x => x is
LocalizedRouteAttribute).TolList())
{
var localizedRoute = directRouteFactory as LocalizedRouteAttribute;
if (localizedRoute != null)
{
routeAttributes.AddRange(localizedRoute.GetLocalizedVersions());
}
}
return routeAttributes;
}

The key aspect of this LocalizedDirectRouteProvider is that in the GetActionRouteFactories, instead of
just returning the IDirectRouteFactories it can pick up statically from the HttpActionDescriptor as attributes,
you also call your own method, GetLocalizedVersions, which will allow you to add a number of language-specific
LocalizedRouteAttributes as if they were statically declared too.

The only thing left to do is to modify your call to MapHttpAttributeRoutes to take the
LocalizedDirectRouteProvider into account when processing the routing attributes. Of course, you will also need
to add some translations. An example of a controller with a couple of routes, as well as the setup of their translations
into Polish and German, is shown in Listing 3-31.

Listing 3-31. A Sample Translation Infrastructure Setup in a Katana-Hosted Web API

public class Startup
{

public void Configuration(IAppBuilder appBuilder)
{

var config = new HttpConfiguration();
config.MapHttpAttributeRoutes(new LocalizedDirectRouteProvider());
LocalizedRouteAttribute.Routes.Add("order", new Dictionary<string, string>

{
{ "de-CH", "auftrag" },
{ "pl-PL", "zamowienie" }

1

LocalizedRouteAttribute.Routes.Add("orderById", new Dictionary<string, string>

{
{ "de-CH", "auftrag/{id:int}" },
{ "pl-PL", "zamowienie/{id:int}" }
D;

appBuilder.UseWebApi(config);

86

CHAPTER 3 © ROUTING

public class OrdersController : ApiController

{

[LocalizedRoute("order", Name = "order")]
public HttpResponseMessage Get()
{

}

[LocalizedRoute("order/{id:int}", Name = "orderById")]
public HttpResponseMessage GetById(int id)

{
}

//omitted for brevity

//omitted for brevity

With this in place, all of the following routes are now operational and registered against your ASP.NET Web
API service:

e myapi.com/order (English route)

e myapi.com/auftrag (German route)

e myapi.com/zamowienie (Polish route)

e myapi.com/order/{id} (English route)

e myapi.com/auftrag/{id} (German route)

e myapi.com/zamowienie/{id} (Polish route)

3-12. Generate a Link to the Route
Problem

You want to be able to generate links that point to specific routes, instead of hardcoding raw strings.

Solution

ASP.NET Web API supports route-bound link generation through the UrlHelper class. An instance of UrlHelper is
available as a public Ur1 property on the ApiController and on the RequestContext object on HttpRequestMessage.

To generate a link, you have to pass a route name and the relevant route values to one of the methods (Route or
Link) exposed by UrlHelper.

var routeLink = Url.Link("GetTeamById", new {id = team.Id});

Caution Do not confuse System.Web.Http.UrlHelper, used in ASPNET Web API with System.Web.Mvc.UrlHelper,
which is ASP.NET MVC-specific.

87

CHAPTER 3 © ROUTING

How It Works

Route values can be passed either as an anonymous object or as IDictionary<string, object>.Ifyou declared your
routes using centralized routing, each route already has a name; it’s a prerequisite. If you used attribute routing, route
name is not mandatory, so you will have to ensure that the route declaration, in addition to the route template, also
provides a name through which it could be addressed. For example,

[Route("api/teams/{id}", Name = "GetTeamById")]
public Team GetTeam(int id)

The outline of UrlHelper is shown in Listing 3-32.

Listing 3-32. Definition of UrlHelper

public class UrlHelper

{

public UrlHelper()

public UrlHelper(HttpRequestMessage request)

public HttpRequestMessage Request

public virtual string Content(string path)

public virtual string Route(string routeName, object routeValues)

public virtual string Route(string routeName, IDictionary<string, object> routeValues)

public virtual string Link(string routeName, object routeValues)

public virtual string Link(string routeName, IDictionary<string, object> routeValues)
}

The difference between Route and Link methods is that Route generates a relative URL, while Link produces
an absolute URL. Link will actually use Route internally and concatenate it with the RequestUri of the current
HttpRequestMessage.

Content is an extra helper method that allows you to create an absolute URL off a string, which could either be a
relative URL or a virtual path.

Tip Since ASP.Net Web API 2, all methods on UrlHelper are virtual, therefore using it will not cripple the testability
of your solution, as the return can always be mocked.

The Code

An example of using Ur1Helper with attribute routing to generate a route-specific link is shown in Listing 3-33. In this
particular case, a link to a newly created resource is created and returned to the user in the Location header.

Listing 3-33. Sample Use of UrlHelper

public class Team

{
public int Id { get; set; }
public string Name { get; set; }

88

CHAPTER 3 © ROUTING

public class TeamsController : ApiController

{

//repository implementation is irrelevant

private readonly field ITeamsRepository _teams;

public TeamsController(ITeamsRepository teams)

{
_teams = teams;

}

[Route("api/teams/{id}", Name = "GetTeamById")]

public Team GetTeam(int id)

{
var team = Teams.FirstOrDefault(x => x.Id == id);
if (team == null) throw new HttpResponseException(HttpStatusCode.NotFound);
return team;

}

[Route("api/teams")]

public HttpResponseMessage PostTeam(Team team)

{
_teams.Add(team);
var routelink = Url.Link("GetTeamById", new {id = team.Id});
var response = new HttpResponseMessage(HttpStatusCode.Created);
response.Headers.Location = new Uri(routelink);
return response;

}

}

The same code could be used with centralized routing, as long as the route name used to generate the link is
changed to a name of a centrally defined route.

89

CHAPTER 4

Content Negotiation and Media Types/

This chapter covers the concept of content negotiation, handling media types, and working with model binding. It
also covers handling binary data and file uploads in ASP.NET Web API applications.
You will learn how to do the following:

e Request and respond with various media types (Recipes 4-1 and 4-2)

e Control model binding (Recipes 4-3 and 4-4)

e Customize content negotiation (Recipes 4-5, 4-6, and 4-9)

e Perform content negotiation by hand or bypass it (Recipes 4-7 and 4-8)
e Work with binary data (Recipe 4-10)

e Accept file uploads in your Web API application (Recipes 4-11, 4-12 and 4-13)

4-1. Request a Specific Media Type from ASP.NET Web API
Problem

You would like to know how to request a resource representation in a JSON or XML format from an ASP.NET Web API
endpoint.

Solution

Out of the box, ASP.NET Web API supports the notion of content negotiation, which is the process of selecting the best
representation (XML, JSON, etc.) for a given resource, provided there are multiple representations available.

The primary mechanism driving content negotiation is the request header; however, there are a few other
criteria that the Web API team has decided to implement to make the whole process as intuitive as possible.

How It Works

Content negotiation is one of the key concepts at the heart of any modern web/HTTP framework, and not just
ASP.NET Web API; many other .NET-based web frameworks such as NancyFx and ServiceStack support it.

This might be new to developers coming from an ASP.NET MVC background (which has no built-in content
negotiation support), and those developers might wonder why they would ever need it. However, the notion of
content negotiation is an intrinsic server-driven aspect of HTTP, and plays a vital role when using HTTP as
an application protocol.

91

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Content negotiation (conneg) was born when W3C released its RFC 2616 (Request For Comments), where
conneg was defined for the first time. In short, it is the process of selecting the best representation (XML, JSON, etc.)
for a given resource (as long as the resource has multiple representations to choose from). Moreover, any request may
be subject to content negotiation, regardless of whether the request has been successfully fulfilled by the server or
not—the only requirement being that the entity processed should have a body, as content negotiation applies to the
format of the body.

In the same RFC 2616, W3C also provides a definition for media type, as being used “in the Content-Type
(section 14.17) and Accept (section 14.1) header fields in order to provide open and extensible data typing and type
negotiation.” There are countless examples of media types; two of the most common ones in the ASP.NET Web API
world are application/xml and application/json.

Note You can find the full text of RFC2616 at http://www.ietf.org/rfc/rfc2616.txt.

As aresult, content negotiation determines, based on the client’s request, which media type is going to be used to
return an API response. In ASP.NET Web AP]I, that boils down to the HTTP client engaging in content negotiation with
the server, and based on the information available, selecting a relevant MediaTypeFormatter to process the body of
the HTTP request message, extracting the underlying .NET object (data transfer object), and providing a meaningful
response in the format the client can understand.

ASP.NET Web API will go through a series of steps when trying to match a relevant formatter. As soon as a match
is found, the result is returned immediately and no further processing is done. This gives the developers a chance to
declare their rules at different precedence levels. Let’s walk through the conneg process.

The nature and specifics of MediaTypeFormatters are discussed in detail in Recipe 4-6. Out of the box, ASP.NET
Web API ships with five formatters (System.Net.Http.Formatting namespace):

e JsonMediaTypeFormatter: For handling JSON. Uses JSON.NET but can be switched to
DataContractJsonSerializer.

e BsonMediaTypeFormatter: For handling BSON (binary JSON). Uses JSON.NET.

e XmlMediaTypeFormatter: For handling XML. Uses DataContractSerializer (can be switched
to XmlSerializer).

e FormUrlEncodedMediaTypeFormatter: For handling HTML form URL-encoded data.

e JQueryMvcFormUrlEncodedFormatter: For handling model-bound HTML form URL-encoded
data.

The Code

The most straight forward way to take advantage of the automatic content negotiation process provided by ASP.NET
Web API is to expose an action returning a concrete type rather than HttpResponseMessage or IHttpActionResult;
see Listing 4-1.

Listing 4-1. A Sample ASP.NET Web API Controller

public class ItemsController : ApiController

{

public IEnumerable<Item> Get()
{

return new List<Item>

92

http://www.ietf.org/rfc/rfc2616.txt

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

new Item {Id
new Item {Id

"Filip"},
"Not Filip"}

1, Name
2, Name

};

CONTENT NEGOTIATION WITH HTTPRESPONSEMESSAGE

If you use one of the HttpResponseMessage extension methods that System.Web.Http introduces, you can
still work with HttpResponseMessage in your action methods and avoid having to bypass content negotiation,
hard-code a formatter, or perform manual content negotiation (see Recipe 4-7).

public static HttpResponseMessage CreateResponse<T>(this HttpRequestMessage request, T
value);

public static HttpResponseMessage CreateResponse<T>(this HttpRequestMessage request,
HttpStatusCode statusCode, T value);

In this case, all you need to do is pass in your object instance; under the hood, the framework will perform
content negotiation for you and create an HTTP response with a proper media type, which is exactly the process
discussed in Recipe 4-7.

public HttpResponseMessage Get()

{
//get myObjInstance from somehwere
var response = Request.CreateResponse<ResponseDto> (HttpStatusCode.OK, myObjInstance);
return response;

}

Such an approach lets you work closer to the metal than returning a concrete .NET object (a DTO) - as you do not
relinquish your chance to interact with the fundamental HTTP concepts embodied by the HttpResponseMessage
instance.

When a request flows into the ASP.NET Web API pipeline, the first things the framework will look at (and this is

not something defined in any RFC, it’s just a Web API convention) are the MediaTypeMappings (discussed in Recipe 4-9).
However, they are disabled by default.

Since content negotiation is typically driven by the headers, your HTTP request should carry an Accept header to

specify which media type you are expecting to receive in response.

GET /api/items/ HTTP/1.1
Accept: application/xml

GET /api/items/ HTTP/1.1
Accept: text/csv

93

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

If your HTTP request has a body—perhaps you want to create a new resource or update an existing one—and you
skip the Accept header, ASP.NET Web API will look for the Content-Type header of your request’s body to determine
the response media type. This is very logical, as it creates symmetry between client and server behavior.

PUT /api/items/1 HTTP/1.1
Content-Type: application/json
Body: {"Id":"1", "Name":"MyItem"}

The final criterion is whether the selected MediaTypeFormatter can even serialize a specific type at all; if so, the
first match is selected and used. Out of the box, it means that, at worst, the client will always get a JSON response.

However, such behavior is sometimes undesirable. Imagine a client requesting a text/pdf; if your Web API
doesn’t have a relevant formatter available, it will always respond with JSON, which might break the client. This
behavior can be disabled (see Recipe 6-6).

4-2. Support Additional Media Types
Problem

You would like to support additional request and response formats in your ASP.NET Web API, not just the default ones
of XML and JSON/BSON.

Solution

If you would like to allow the existing XML and JSON/BSON MediaTypeFormatters to work with different media
types than the ones used by them by default (application/json, text/xml, application/xml), you can extend the
SupportedMediaTypes property that each of the formatters exposes.

On the other hand, if you would like to introduce a completely new serialization format, like the ultra-fast
Protocol Buffers (application/x-protobuf), you can extend the Formatters collection exposed by the
HttpConfiguration with a newMediaTypeFormatter, in this case, a Protocol Buffers one.

A WebApiContrib project contains a lot of community-contributed formatters which can be installed from NuGet
and are ready to be used in your project; ProtoBufFormatter is one of them.

How It Works

Formatters act as a bridge between HTTP and the CLR, serializing and deserializing output of and input into
an ASP.NET Web API HTTP endpoint. As a result, the global Formatters collection on the HttpConfiguration is one
of the finest Web API extensibility points, allowing developers to easily add more media types to the default XML/
JSON support that Web API provides.

The formatter in ASPNET Web API consists of three primary elements:

e Arule defining whether the HTTP input can be read (deserialized) into a .NET type.

e Arule defining whether a .NET type (output) can be written (serialized) into an HttpContent
object (body of the HTTP message).

¢ Definitions of the methods that would do writing/reading to and from the HTTP content
streams.

In other words, each formatter can specify whether it should participate in either reading requests, returning
responses, or both. Additionally, it can be configured to work only with specific Types; after all, not every DTO can be
represented in every media type. I cover the internals of a MediaTypeFormatter in Recipe 4-6.

94

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

The order of formatters in the global Formatters collection is important. If two or more formatters are suitable for
handling the request/response, the content negotiation engine will pick the one registered first. As a consequence of
this, the JsonMediaTypeFormatter is the default fallback mechanism because it is marked as supporting every single
Type and is registered before the XML formatter.

The Code

Suppose you would like the XML formatter to also handle the text/html media type. In that case, you add an instance
of arelevant MediaTypeHeaderValue to the SupportedMediaTypes collection of the XmlMediaTypeFormatter.

httpConfiguration.Formatters.XmlFormatter. SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/
html"));

To add support for the aforementioned Protocol Buffers formatter, you need to first install it from NuGet
(WebApiContrib.Formatting.ProtoBuf), and then add to the Formatters collection on your HttpConfiguration.

httpConfiguration.Formatters.Insert(0, new ProtoBufFormatter());
In this case, since you added it at the beginning of the collection, and because it’s internally configured to support
all Types, it also becomes the default formatter if content negotiation cannot determine which formatter to use for a

given HTTP request or response.
Other formatters available from WebApiContrib are listed in Table 4-1.

Table 4-1. List of MediaTypeFormatters from the WebApiContrib Project

Formatter Adds support for Media types
WebApiContrib.Formatting.Bson BSON (binary JSON) - Web API application/bson
prior to version 2.5 didn’t have it
WebApiContrib.Formatting.Html Raw HTML text/html
application/xhtml
application/xhtml+xml
WebApiContrib.Formatting. JSON - replacement for application/json
JavaScriptSerializer JsonMediaTypeFormatter
WebApiContrib.Formatting.Jsonp JSONP text/javascript
WebApiContrib.Formatting.MsgPack MessagePack application/x-msgpack
WebApiContrib.Formatting.ProtoBuf Protocol Buffers application/x-protobuf
WebApiContrib.Formatting.Razor HTML with Razor text/html
application/xhtml
application/xhtml+xml
WebApiContrib.Formatting. JSON - replacement for application/json
ServiceStack JsonMediaTypeFormatter, uses
ServiceStack Text serializer
WebApiContrib.Formatting. Collection+JSON application/vnd.collection+json
CollectionJson
WebApiContrib.Formatting.X1sx Generates formatted Excel application/vnd.ms-excel
documents

95

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

In order to replace an existing formatter with a different one (i.e. JsonMediaTypeFormatter with
ServiceStackMediaTypeFormatter) you simply need to remove the unnecessary one from the Formatters collection
and add the new one.

config.Formatters.Remove(config.Formatters.JsonFormatter);
config.Formatters.Add(new ServiceStackTextFormatter());

4-3. Control Model Binding From URI and Body
Problem

You would like to change the default behavior of ASP.NET Web API, which reads basic parameters from the URI and
complex ones from the body of the HTTP request.

Solution
ASP.NET Web API provides a number of places in which the model binding process can be customized:

e Through the use of [FromBody] and [FromUri] attributes, a given parameter can be forced to
load from the body of the request or from the URI, respectively.

e A custom TypeConverter can provide instructions on converting a string to a custom Type.

e Acustom [ModelBinder] attribute can define custom logic on determining how a set of data
fed from ValueProviders should be converted into an action parameter.

e ValueProviders are more low-level than ModelBinders and can provide generic instructions
on getting a specific value from an HttpRequestMessage.

e ModelBinders are specialized examples of a general mechanism called
HttpParameterBinding, which can execute both as a model binder and as a
MediaTypeFormatter.

Note ValueProviders and custom HttpParameterBinding, due to their low-level nature, are typically more
relevant when you are building framework plug-ins or extensions, and are rarely used in typical, everyday API
development.

How It Works

The basic rules of parameter binding in ASP.NET Web API are as follows:

e Primitive and basic types are read from the URI using model binders: int, string, boolean,
Guid, DateTime, decimal, and so on.

e Collections and complex types are read from the body of the HTTP request using a
MediaTypeFormatter selected by performing content negotiation.

Additionally, as discussed in the next recipe, only a single thing can be read from a body.

96

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

The Code

Let’s walk through the process of customizing Web API’s default behavior through the use of [FromUri] and
[FromBody], as well as writing custom TypeConverters and ModelBinders.

FromUri and FromBody

In order to force simple types to be bound from the body, you need to decorate them with a [FromBody] attribute.
Bear in mind that the constraint of only a single thing being allowed to be read from the body of the HTTP request still
applies. See Listing 4-2.

Listing 4-2. Correct and Incorrect Usage of [FromBody] Attribute

//correct
public void Post([FromBody]int id)
{

//omitted for brevity
}

//incorrect

public void Post([FromBody]int id, [FromBody]string name)
{

//omitted for brevity

}

One other thing to be aware of here is that ASP.NET Web API will bind over the entire body; therefore the whole
content of the body has to be the required value (int in this case). This is shown in Listing 4-3.

Listing 4-3. Correct and Incorrect Request to and Endpoint Using [FromBody] on a Primitive Type

//correct

POST /api/my HTTP/1.1
Content-Type: application/json
Body: 7

//incorrect

POST /api/my HTTP/1.1
Content-Type: application/json
Body: {id: 7}

Similarly, with the [FromUri] attribute, you can force model binding of complex types from the UR], instead of a
MediaTypeFormatter. This is very useful for GET requests, which by design cannot have a request body, as they allow
you to pass in complex types from the URI directly. Consider a simple example using a wrapper for a simple search
query (Listing 4-4).

Listing 4-4. Complex Object Which Will Be Read from URI and a Sample Action Binding It

public class SearchQuery

{
public SearchQuery()
{
PageSize = 10;
}

97

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

public int PageIndex { get; set; }

public int PageSize { get; set; }

public string StartsWith { get; set; }
}

public HttpResponseMessage Get([FromUri]SearchQuery query)
{

//omitted for brevity
}

You can now very easily pass it from the client in the URI.

GET /api/search?Pagelndex=1&PageSize=5&StartsWith=asp HTTP/1.1
Accept: application/json

It's worth noting that in this case you can still have additional action parameters bound from the URI (the single
parameter restriction applies to body only), so for example the following signature is still valid:

public HttpResponseMessage Get(int id, [FromUri]SearchQuery query)

TypeConverters

TypeConverters assume the responsibility of converting a string (raw value from an HTTP request) into a concrete
Type. With that, a complex type can be treated as a simple type, since ASP.NET Web API passes a string to the
converter, which outputs a complex type. You could alter your SearchQuery object to work with a TypeConverter by
writing a SearchQuery-specific converter as shown in Listing 4-5.

Listing 4-5. A Sample TypeConverter

public class SearchQueryConverter : TypeConverter

{

public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType)

{
if (sourceType == typeof(string))
{

return true;

}

return base.CanConvertFrom(context, sourceType);

}

public override object ConvertFrom(ITypeDescriptorContext context,
CultureInfo culture, object value)
{

if (value is string)

{
var parts = ((string)value).Split(',");
if (parts.Length == 3)

98

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

{
int firstParsed;
int secondParsed;
if (Int32.TryParse(parts[0], out firstParsed) 8% Int32.TryParse(parts[1], out
secondParsed))
{
return new SearchQuery
{
PageIndex = firstParsed,
PageSize = secondParsed,
StartsWith = parts[2]
b
}
}

}

return base.ConvertFrom(context, culture, value);

In this example, it is assumed that the client will pass a comma-delimited structure of a SearchQuery object in
the query string. The converter then tries to split it, and if all conditions are matched, a new instance of SearchQuery
is passed into the action.

In addition to that, it’s necessary to decorate the SearchQuery DTO with a TypeConverter attribute.

[TypeConverter(typeof(SearchQueryConverter))]
public class SearchQuery

As a result, you can now write actions taking in this DTO and have it populated automatically from the URI. You
make requests to the API as follows:

GET /api/search?query=1,10,asp HTTP/1.1
Accept: application/json

ModelBinders

The final example in this recipe will show a ModelBinder, which is a slightly more flexible option than a
TypeConverter, since, contrary to the latter one, it can be selectively applied. Moreover, a ModelBinder can be generic,
rather than Type-specific. See Listing 4-6.

Listing 4-6. A Sample ModelBinder

public class CollectionModelBinder<T> : IModelBinder
{
public bool BindModel(HttpActionContext actionContext, ModelBindingContext bindingContext)
{
var key = bindingContext.ModelName;
var val = bindingContext.ValueProvider.GetValue(key);
if (val != null)
{
var s = val.AttemptedValue;
try

99

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

{
T[] result;
if (s != null && s.Index0Of(",", StringComparison.Ordinal) > 0)
{
result = s.Split(new[] {","}, StringSplitOptions.None)
.Select(x => (T) Convert.ChangeType(x, typeof (T)))
.ToArray();
}
else
{
result = new[] {(T) Convert.ChangeType(s, typeof (T))};
bindingContext.Model = result;
return true;
}
catch (InvalidCastException)
{
return false;
}
}

return false;

In this example, the binder will try to bind a collection of simple parameters (int, double, string, etc.) from a
comma-delimited request. In case of a casting failure, the BindModel method will return false.

ModelBinder can be applied directly to the parameter of an action, which means only this specific occurrence of
the action parameter will be bound using the binder.

public HttpResponseMessage Get([ModelBinder(typeof(CollectionModelBinder<int>))] IEnumerable<int>
numbers)

public HttpResponseMessage Get([ModelBinder(typeof(CollectionModelBinder<string>))]
IEnumerable<string> words)

The HTTP requests can now look like this:

GET /api/my?numbers=1,2,3,4 HTTP/1.1
Accept: application/json

GET /api/my?words=asp,net,web,api HTTP/1.1 Accept: application/json
It can also, similarly to TypeConverter, be applied on the DTO (however, in this example you are dealing with

collection ModelBinder so there is no DTO to apply it to, unless you have a DTO extending one of the default .NET
collections). Finally, it can also be registered globally against HttpConfiguration and its Services property.

4-4, ASP.NET MVC-style Parameter Bindingin ASP.NET Web API

Problem
You would like ASP.NET Web API to behave in the same way as ASP.NET MVC when performing parameter binding.

100

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Solution

The entire process of parameter binding in ASP.NET Web API is controlled by a replaceable IActionValueBinder
service. The WebApiContrib project provides an MvcActionValueBinder written by Microsoft’s Mike Stall, which
extends the DefaultActionValueBinder and introduces the MVC parameter binding semantics into ASP.NET Web
API. You can download it and replace the default IActionValueBinder in your HttpConfiguration.

Install-package WebApiContrib
httpConfiguration.Services.Replace(typeof(IActionValueBinder), new MvcActionValueBinder());

How It Works

DefaultActionValueBinder introduces two major differences (or restrictions, if you will) when compared to the MVC
parameter binding mechanism:

e Asingle model cannot be composed of values (fields) coming from both body and URIL.

e Only a single thing can be read from a body, which means that if you want to accept two
complex DTOs as an input to your action, you need to wrap them together in another type.

MvcActionValueBinder changes this behavior by reading the entire body of the request and treating it as a
set of key-value pairs (assuming that the body is a FormDataCollection). All of the data gets saved in the request’s
Properties dictionary and is shared between the parameters; as a consequence, a number of parameters can be
bound from the body.

The Code

Globally enabling MVC style binding is very easy, as it comes down to swapping the default implementation of
IActionValueBinder with MvcActionValueBinder:

httpConfiguration.Services.Replace(typeof(IActionValueBinder), new MvcActionValueBinder());

However, this is hardly advisable, and ideally you'd like to have more granular control over this. Thankfully,
you can also easily apply MvcActionValueBinder at the controller level through the use of a controller-scoped
configuration (see Recipe 5-3) which is shown in Listing 4-7.

Listing 4-7. A Controller with MvcActionValueBinder Applied to It

public class MyComplexDto

{
public string Message { get; set; }
public int Id { get; set; }

}

[MvcBindingConfiguration(ActionValueBinder=typeof(MvcActionValueBinder))]
public class MyController : ApiController

{
public void Post(MyComplexDto dto)
{
}

}

101

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Listing 4-8 shows three different POST requests. The MVC-style model binding will work correctly in all of these
cases, regardless of whether a given field is provided via the URI or the body.

Listing 4-8. Various Requests to an MVC-Style Binding Endpoint, All Resulting in the Same Model Being Passed into
the Action

POST /api/my?Id=18Message=hello HTTP/1.1

POST /api/my?Td=1 HTTP/1.1
Content-Type: application/x-www-form-url
Body: Message=hello

POST /api/my HTTP/1.1
Content-Type: application/x-www-form-url
Body: Message=hello&Id=1

4-5. Customize XML and JSON Responses
Problem

You would like to change some of the serialization settings on the default formatters, such as camel-casing JSON,
enumeration handling, max depth, XML structure, etc.

Solution

In order to customize the output of both of the default formatters, you have to configure the underlying serializer
in each of them. JsonMediaTypeFormatter uses JSON.NET under the hood, while XmIMediaTypeFormatter uses
DataContractSerializer. Out of the box, Web API allows you to easily switch, through a boolean setting, to
DataContractJsonSerializer and XmlSerializer, respectively.

Both formatters expose hooks for tapping into the process of serializer initialization, which can be overridden.
What'’s more, the serialization settings are exposed too, which means some settings can be tweaked without having to
re-instantiate the given formatter. This option is usually the fastest and simplest. On the other, removing a formatter,
and adding back a new one, preconfigured with relevant settings, is also a viable option.

How It Works

To switch from JSON.NET to DataContractJsonSerializer, you need to set the UseDataContractIsonSerializer
flag, while to switch from DataContractSerializer to XmlSerializer, you need to set the UseXmlSerializer flag.

httpConfiguration.Formatters.JsonFormatter.UseDataContractIsonSerializer = true;
httpConfiguration.Formatters.XmlFormatte.UseXmlSerializer = true;

ASP.NET Web API will look at these flags to determine what kind of formatter you wish to use.
DataContractSerializer-based serializers for both JSON and XML operate on their default settings. For JSON
handling with JSON.NET, Web API uses mostly JSON.NET defaults, except for two custom settings:

e MissingMemberHandling is set Ignore.

e TypeNameHandling is set to None.

102

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

XML handling with Xm1Serializer is done through slightly customized XmlWriterSettings:
e OmitXmlDeclaration isset true.
e (loseOutputissetto false.

e (CheckCharactersis setto false.

The Code

The following section will discuss the specifics of customizing JSON and XML formatters, respectively.

JSON

JSON.NET’s SerializerSettings are exposed through the JsonMediaTypeFormatter’s SerializerSettings
property. To globally tweak those, you can simply walk up to the registered JSON formatter and apply the necessary
changes, as shown in Listing 4-9.

Listing 4-9. Customizing the Default JsonFormatter

config.Formatters.JsonFormatter.SerializerSettings.DateFormatHandling = DateFormatHandling.
IsoDateFormat;

config.Formatters.JsonFormatter.SerializerSettings.ReferencelLoopHandling = ReferenceloopHandling.
Ignore;

config.Formatters.JsonFormatter.SerializerSettings.Formatting = Formatting.Indented;

config.Formatters.JsonFormatter.SerializerSettings.ContractResolver = new
CamelCasePropertyNamesContractResolver();

In this particular example, a number of JSON.NET-specific settings are set: treating all dates as ISO dates, indenting
the JSON output, ignoring reference loops (helps with lazy loaded self-referencing entities), and applying camel casing.
For all available settings, please refer to JSON.NET documentation at http://james.newtonking.com/json.

You could also set the entire SerializerSettings property in a single go, instead of dealing with individual
properties, or even recreate the entire JsonMediaTypeFormatter with the relevant SerializerSettings object.

JsonMediaTypeFormatter also exposes a virtual CreateJsonSerializer method which can be overridden to
provide the formatter with the properly configured JSON.NET serializer.

XML

Both XML serializers, DataContractSerializer and XmlSerializer, are created per Type. XmlMediaTypeFormatter
exposes virtual methods responsible for creating instances of those which may be used to customize certain
behaviors. These methods are also called only once per Type, since the formatter caches the resolved serializers.

public virtual XmlSerializer CreateXmlSerializer(Type type)
public virtual DataContractSerializer CreateDataContractSerializer(Type type)

While discussing the differences between DataContractSerializer and XmlSerializer is beyond the scope of

this book (this is nothing ASP.NET Web API specific, as both belong to the core .NET framework), the rule of thumb is
that DataContractSerializer is faster but XmlSerializer gives you more granular control over the output XML.

103

http://james.newtonking.com/json

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Listing 4-10 shows a simple example of a customized DataContractSerializer, which then has to be used to
replace the default one.

Listing 4-10. Customizing the XML Formatter

public class MyXmlMediaTypeFormatter : XmlMediaTypeFormatter

{
public virtual DataContractSerializer CreateDataContractSerializer(Type type)
{
var settings = new DataContractSerializerSettings
{
MaxItemsInObjectGraph = 20,
PreserveObjectReferences = true
b
var mySerializer = new DataContractSerializer(type, settings);
return mySerializer;
}
}

httpConfiguration.Formatters.Remove(config.Formatters.XmlFormatter);
httpConfiguration.Formatters.Add(new MyXmlMediaTypeFormatter());

Customization of the XmlSerializer can be done in the same way, through overriding the CreateXmlSerializer
method, but it can also be done by tweaking the XmlWriterSettings directly. For example:

httpConfiguration.Formatters.XmlFormatter.UseXmlSerializer = true;
httpConfiguration.Formatters.XmlFormatter.WriterSettings.OmitXmlDeclaration = false;

4-6. Write Your Own MediaTypeFormatter
Problem

You would like to create a custom formatter to handle an RSS media type (application/rss+xml), as it is not
supported by ASP.NET Web API out of the box.

Solution

In order to facilitate handling of an RSS media type, you can build a custom MediaTypeFormatter and extend the
default formatters collection. Subclassing a MediaTypeFormatter is an extremely powerful technique for extending
ASP.NET Web API.

How It Works

The MediaTypeFormatter abstract class provides you four methods to override, as well as a couple of collections
for fine-grained control over the behavior of your formatter. An overview of the members of this class is shown in
Listing 4-11.

104

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Listing 4-11. Overview of the Abstract MediaTypeFormatter Class

public abstract class MediaTypeFormatter

{
public Collection<MediaTypeHeaderValue> SupportedMediaTypes { get; private set; }
public Collection<Encoding> SupportedEncodings { get; private set; }
public Collection<MediaTypeMapping> MediaTypeMappings { get; private set; }
public virtual Task<object> ReadFromStreamAsync(Type type, Stream stream, HttpContentHeaders
contentHeaders, IFormatterLogger formatterLogger)
{
// to be overriden
}
public virtual Task WriteToStreamAsync(Type type, object value, Stream stream,
HttpContentHeaders contentHeaders, TransportContext transportContext)
{
// to be overriden
}
public abstract bool CanReadType(Type type);
public abstract bool CanWriteType(Type type);
}

SupportedMediaTypes and SupportedEncodings collections allow you to further restrict the formatter to specific
media types and encodings. These rules will be taken into account when Web API runs its content negotiation
process to determine which formatter should be selected for a given request. Note that the read/write API is entirely
asynchronous.

MediaTypeMappings are discussed in detail in Recipe 4-9.

The Code

In this example, the custom RSS MediaTypeFormatter will do all the heavy lifting for Web AP], as it will convert the
model returned by your controller’s action into an RSS output type (application/rss+xml).

You will also utilize the CanReadType and CanWriteType methods. Since not every single possible .NET type can
be converted into a meaningful RSS representation, you will introduce a constraint interface, IRss. The formatter will
then check whether the model passed by the action implements the IRss interface as a prerequisite to perform the
output conversion.

What's more, since you will only deliver content with RSS (never read from an RSS with this formatter), you will
skip the deserialization process altogether, and make the formatter one-way only.

First, let’s introduce an IRss contract and a sample model, as shown in Listing 4-12.

Listing 4-12. An IRss Constraint Interface and a Sample Model Implementing It

public interface IRss

{
string Title { get; set; }
string Description { get; set; }
DateTime CreatedAt { get; set; }

105

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

}

Uri Link { get; set; }
string Author { get; set; }

public class Article : IRss

{

public int Articleld { get; set; }
public Uri Link { get; set; }

public string Title { get; set; }
public string Description { get; set; }
public string Content { get; set; }
public DateTime CreatedAt { get; set; }
public string Author { get; set; }

The formatter inherits from MediaTypeFormatter and can be found in Listing 4-13.

Listing 4-13. An Implementation of RssMediaTypeFormatter

public class RssMediaTypeFormatter : MediaTypeFormatter

{

106

private readonly string rss = "application/rss+xml";

public RssMediaTypeFormatter()

{
SupportedMediaTypes.Add(new MediaTypeHeaderValue(rss));

Func<Type, bool> typeisIRss = (type) => typeof(IRss).IsAssignableFrom(type);
Func<Type, bool> typeisIRssCollection = (type) => typeof(IEnumerable<IRss>).
IsAssignableFrom(type);

public override bool CanReadType(Type type)

{
return false;
}
public override bool CanWriteType(Type type)
{
return typeisIRss(type) || typeisIRssCollection(type);
}

public override Task WriteToStreamAsync(Type type, object value, Stream writeStream,
HttpContent content, TransportContext transportContext)
{

RssFeedBuilder builder;

if (typeisIRss(type))

builder = new RssFeedBuilder((IRss)value);
else
builder = new RssFeedBuilder((IEnumerable<IRss>)value);

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

builder.BuildSyndicationFeed(writeStream, content.Headers.ContentType.MediaType);
return Task.FromResult(0);

In the constructor, you declare support for the application/rss+xml Accept header. Notice that the formatter is

very specific: it will only work with application/rss+xml.

You have two simple predicates, which will check whether the DTO type returned from your actions is either IRss

or IEnumerable<IRss>, and you use them in the CanReadType and CanWriteType methods of the formatter. These
three conditions are used by ASP.NET Web API to determine whether a given formatter should take part in the HTTP
response process.

The process of writing the actual HTTP response happens in the formatter’s WriteToStreamAsync method, which

uses a helper class called RssFeedBuilder (Listing 4-14) to convert the IRss into a RSS syndication feed (using .NETs
Rss20FeedFormatter class from the System.ServiceModel.Syndication namespace).

Listing 4-14. Helper Class Performing the Actual Build-up of the RSS Feed

public class RssFeedBuilder

{

private readonly IEnumerable<IRss> _items;
private readonly string _feedTitle;

public RssFeedBuilder(IRss item) : this(new List<IRss> { item })
(}

public RssFeedBuilder(IEnumerable<IRss> items, string feedTitle = "My feed")

{
_items = items;
_feedTitle = feedTitle;
}

public void BuildSyndicationFeed(Stream stream, string contenttype)

{

List<SyndicationItem> items = new List<SyndicationItem>();
var feed = new SyndicationFeed()

{
};

Title = new TextSyndicationContent(feedTitle)

var enumerator = _items.GetEnumerator();
while (enumerator.MoveNext())

{
}

items.Add(BuildSyndicationItem(enumerator.Current));

feed.Items = items;
using (XmlWriter writer = XmlWriter.Create(stream))

Rss20FeedFormatter rssformatter = new Rss20FeedFormatter(feed);
rssformatter.WriteTo(writer);

107

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

private SyndicationItem BuildSyndicationItem(IRss singleItem)

{

var feedItem = new SyndicationItem()

{

};

Title = new TextSyndicationContent(singleItem.Title),
BaseUri = singleItem.Link,

LastUpdatedTime = singleItem.CreatedAt,

Content = new TextSyndicationContent(singleItem.Description)

feedItem.Authors.Add(new SyndicationPerson() { Name = singleItem.Author });
return feedItem;

The final piece of the puzzle is to plug in the formatter into the Web API’'s HttpConfiguration.

httpConfiguration.Formatters.Insert(0, new RssMediaTypeFormatter());

You can now declare some controller actions that return an object or a collection of objects that implement IRss.

A sample is shown in Listing 4-15. Such ASP.NET Web API endpoints can be requested by the client by passing in the
Accept header application/rss+xml. This will match your formatter’s SupportedMediaTypeMappings and therefore
the ASP.NET Web API pipeline will select it to issue the response in RSS format.

Listing 4-15. Sample Controller Exposing Objects That Can Be Transformed by Web API into an RSS Feed

public class ValuesController : ApiController

{

108

private readonly List<Article> _articles;

public ValuesController()

{

_articles = new List<Article> {

};

new

new

Article {

Articleld = 1,

Author = "Filip",

CreatedAt = new DateTime(2012,10,25),
Description = "Some text",

Link = new Uri("http://www.strathweb.com/1"),
Title = "Article One"

Article {

Articleld = 2,

Author = "Filip",

CreatedAt = new DateTime(2012,10,26),
Description = "Different text",

Link = new Uri("http://www.strathweb.com/2"),
Title = "Article Two"

http://www.strathweb.com/1
http://www.strathweb.com/2

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

public IEnumerable<Article> Get()

{
return _articles;
}
public Article Get(int id)
{
return articles.FirstOrDefault(i => i.Articleld == id);
}

This controller still produces a typical XML/JSON output such as you might have come to expect from ASP.NET
Web API, and it is RSS friendly.

4-7. Run Content Negotiation Manually
Problem

You would like to perform the content negotiation process by hand, rather than have ASP.NET Web API do it
automatically for you.

Solution

In order to be able to run content negotiation .manually, you should use the current HttpConfiguration object and
get an instance of the registered IContentNegotiator.

It exposes a Negotiate method thatis used to determine which formatter and media type are supposed to
be used to respond to the client’s HTTP request. The Negotiate method returns information in the form of a
ContentNegotiationResult class. See Listing 4-16.

Listing 4-16. Definition of ContentNegotiationResult

public class ContentNegotiationResult

{
public MediaTypeFormatter Formatter { get; set; }
public MediaTypeHeaderValue MediaType { get; set; }

How It Works

While it is not required too often, you may encounter scenarios where you'd benefit from being able to run content
negotiation manually.

If your action doesn’t return a POCO object but rather an HttpResponseMessage with some content, you will be
required to specify a formatter. To avoid making this decision for the client in an arbitrary way, or simply guessing
which one should be used, you can get a helping hand from IContentNegotiator.

Another common use case for manual content negotiation is situations when you want to respond to the
client directly from an action filter/message handler, without allowing the request to get into any controller action
itself. This mechanism, known as “short-circuiting” of responses, is common when implementing caching or API
throttling solutions.

109

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

CACHING AND MANUAL CONTENT NEGOTIATION

When you build a caching solution based on action filters or message handlers, you want to cache each
representation (version) of processed output (after content negotiation; so JSON, XML and so on) separately rather
the just the raw DTO itself, as in that case you’d have to rerun serialization over and over.

Through the manual use of content negotiation you can determine on every request which version of the response
the client should receive.

Whenever you return HttpResponseMessage or IHttpActionResult directly, Web API will not run content
negotiation on its own anymore.

The Code

A simple example of manual content negotiation is shown in Listing 4-17. The best-match formatter and relevant
media type are determined using the current instance of IContentNegotiator.

Listing 4-17. A Sample Action Performing Content Negotiation Manually

public HttpResponseMessage Get()
{

var item = new MyType(); //whatever you want to return
var negotiator = Configuration.Services.GetContentNegotiator();
var result = negotiator.Negotiate(typeof(MyType), Request, Configuration.Formatters);

var bestMatchFormatter = result.Formatter;
var mediaType = result.MediaType.MediaType;

return new HttpResponseMessage()

{
Content = new ObjectContent<MyType>(items, bestMatchFormatter, mediaType)

};

This way, the relevant formatter will be used to serialize the response for the client. It is worth noting that this is
semantically equivalent to the setup shown in Listing 4-18.

Listing 4-18. Sample Actions Relying on Automatic Content Negotiation

public MyType Get()
{

var item = new MyType();
return item;

}

public HttpResponseMessage Get()
{

//CreateResponse will run conneg internally

var result = Request.CreateResponse(HttpStatusCode.OK, new MyType());
return item;

}

110

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

The major difference in this case is that working with the raw HttpResponseMessage allows you to work directly
with HTTP concepts, instead of relying on the framework to do the translation to HTTP for you.

4-8. Bypass Content Negotiation
Problem

You would like to respond with a specific media type directly, rather than relying on ASPNET Web API to produce the
relevant response format for you.

Solution

There are a two ways to bypass the content negotiation engine in ASP.NET Web API. Instead of returning a type, you
should use one of the following as a return type for your action:

e HttpResponseMessage
e TActionHttpResult (which is used to produce an HttpResponseMessage)

The outcome is that you are then free to work with HTTP concepts directly, and shape the outgoing HTTP
response in any way you want.

How It Works

ASP.NET Web API will run content negotiation for all custom types returned for your actions. However, if you return
an HttpResponseMessage, the pipeline allows it to pass through, simply returning it to the client.

The story is similar with IActionHttpResult, which was introduced in ASP.NET Web API 2. It’s effectively an
interface that acts as a generic factory for HttpResponseMessage. The interface declares only a single method, which
produces a Task<HttpResponseMessage>. See Listing 4-19.

Listing 4-19. Definition of IHttpActionResult

public interface IHttpActionResult
{

}

Task<HttpResponseMessage> ExecuteAsync(CancellationToken cancellationToken);

When Web API encounters a type implementing this interface as result of an executed action, instead of running
content negotiation, it will call its only method (Execute) to produce the HttpResponseMessage, and then use that to
respond to the client.

The Code

Let’s have a look at some of the techniques mentioned above. The simplest possible example involves manually
creating an HttpResponseMessage and choosing the formatter you'd like to use in place of the regular content
negotiation process. This is shown in Listing 4-20.

111

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Listing 4-20. A Sample HttpResponseMessage with an Arbitrary JSON Response

public class ResponseDto

{
public string Message { get; set; }
}
public HttpResponseMessage Get()
{
var message = new ResponseDto
{
Message = "hello world"
};
var result = new HttpResponseMessage(HttpStatusCode.OK)
{
Content = new ObjectContent<ResponseDto>(message, Configuration.Formatters.
JsonFormatter)
};
return result;
}

In this example, you explicitly say that the ResponseDto should be transferred to the client as a JSON, since you
used the out-of-the-box JsonMediaTypeFormatter.

In most cases, bypassing content negotiation like this is not advisable, but in some situations you may be dealing
with specific resources that only have a single, known-in-advance representation, such as HTML or PDF; then you can
easily save your service a trip through the negotiation process.

Of course, if you do things like this often, it may become tedious to repeat the same code that sets up a specific
HttpResponseMessage over and over again. Moreover, this approach might be difficult to unit test (more on that in
Recipe 11-5). This is where IHttpActionResult comes into the picture, as it allows you to package the “recipes” for
an HttpResponseMessage into reusable classes. In fact, the framework itself ships with plenty of IHttpActionResult
implementations already; those are exposed as methods on the base ApiController.

The equivalent to the last piece of code, but with IHttpActionResult, is shown in Listing 4-21.

Listing 4-21. A Sample IHttpActionResult Response in JSON Format
public IHttpActionResult Get()

{
var message = new ResponseDto
{
Message = "hello world"
};
return Json(message);
}

You use a helper method that hangs off the base ApiController, Json<T>(T content), which returns a
JsonResult. As you can see, it is much simpler because you don’t have to create the HttpResponseMessage by hand;
it'’s done inside the JsonResult implementation.

Finally, let’s look at creating a custom IHttpActionResult, which you can use as a way to bypass content
negotiation for your specific media type.

112

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Suppose you are interested in having a shortcut for returning text/plain responses (useful for demos and testing).
Your IHttpActionResult would look like the code in Listing 4-22.

Listing 4-22. An IHttpActionResult Returning text/plain Response

public class PlainTextResult : IHttpActionResult

{
private readonly string _text;
private readonly Encoding _encoding;
public PlainTextResult(string text, Encoding encoding)
{
_text = text;
_encoding = encoding;
}
public Task<HttpResponseMessage> ExecuteAsync(CancellationToken cancellationToken)
{
var response = new HttpResponseMessage(HttpStatusCode.OK)
{
Content = new StringContent(text, encoding)
};
return Task.FromResult(response);
}
}

In this example, you pass in some text and the relevant encoding directly from the action, which are later
transformed into an HttpResponseMessage when the framework invokes the Execute method.

Note StringContent defaults to content type header “text/plain” so there is no need to set it manually.

To use this custom IHttpActionResult in an action, you simply need to return a new instance of
PlainTextResult.

public IHttpActionResult Get()
{

return new PlainTextResult("hello world", Encoding.UTF8);
}

113

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

4-9. Control Media Types with MediaTypeMappings
Problem

You would like to be able to serve specific media types based on an extension in the URL, a query string, or a
predefined request header.

Solution

ASP.NET Web API provides a feature called MediaTypeMappings, which allows you to fine-tune the regular content
negotiation process (which out of the box, relies on Accept and Content-Type headers).

MediaTypeMappings have the highest precedence in content negotiation and let you quickly respond with a
specific media type, as long as the condition defined in the mapping is met by the incoming request.

How It Works

ASP.NET Web API ships with three MediaTypeMappings which can be applied to any formatter. Each of the mappings
lets you provide a different type of a condition.

e QueryStringMapping
e UriPathExtensionMapping
e RequestHeaderMapping

UriPathExtensionMapping tries to find an extension parameter in the route (representing an extension).
This allows your resources to be targeted as if they physically existed; for example, the following will always respond
with JSON/XML, respectively:

GET /api/items.json
GET /api/items.rss

This is especially useful if you want specific resources to look as if they were physical files on the server
(consider actions that generate PDFs or images).
QueryStringMapping looks for a specific query parameter (which can be anything the developer defines):

GET /api/items?format=json
GET /api/items?format=rss

RequestHeaderMapping allows the calling client to specify the required media type through a predefined
header field:

GET /api/items
ReturnType: json

Tip The custom header used here, ReturnType, has no X- prefix on purpose. IETF (Internet Engineering Task Force)
has deprecated it in 2012 (http://tools.ietf.org/search/rfc6648).

114

http://tools.ietf.org/search/rfc6648

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

The Code

In order to register MediaTypeMapping against a formatter, ASP.NET Web API provides a few helper extension
methods. Additionally, MediaTypeFormatter exposes a MediaTypeMappings collection as a property.

MediaTypeMappings can be applied to both the default Web API formatters and to the custom ones. The two
default formatters, XML and JSON, hang off the HttpConfiguration so it can be done directly there, as shown in
Listing 4-23.

Listing 4-23. Examples of Registering the MediaTypeMappings Against Existing Formatters

httpConfiguration.Formatters.JsonFormatter.AddUriPathExtensionMapping("json", "application/json");
xmlConfiguration.Formatters.XmlFormatter.AddUriPathExtensionMapping("xml", "application/xml");

httpConfiguration.Formatters.JsonFormatter. AddQueryStringMapping("format", "json", "application/
json");

xmlConfiguration.Formatters.XmlFormatter. AddQueryStringMapping("format", "xml", "application/
xml");

httpConfiguration.Formatters.JsonFormatter. AddRequestHeaderMapping("ReturnType", "json",
StringComparison. InvariantCultureIgnoreCase, false, "application/json");

xmlConfiguration.Formatters.XmlFormatter. AddRequestHeaderMapping ("ReturnType", "xml",
StringComparison. InvariantCultureIgnoreCase, false, "application/xml");

While the same extension methods can be used to register relevant mapping against your own custom (non-
default) formatters, ideally you would perform such setup from inside the formatter instead (see Listing 4-24).

Listing 4-24. Registering a Mapping from Within the Formatter

public class MyFormatter : MediaTypeFormatter

{
public MyFormatter(string format)
{
AddUriPathExtensionMapping("myExtension", new MediaTypeHeaderValue(format));
}
}

If you are working with UriPathExtensionMapping, you will additionally need to configure proper routes, as the
default routes do not take the extension into account. To register extension-aware routes, you need to use the {ext}
placeholder shown in Listing 4-25.

Listing 4-25. Registering Routes with an {extension} Placeholder for UriPathExtensionMapping

routes.MapHttpRoute(

name: "Api UriPathExtension",

routeTemplate: "api/{controller}.{ext}/{id}",

defaults: new { id = RouteParameter.Optional, ext = RouteParameter.Optional }

)

routes.MapHttpRoute(

name: "Api UriPathExtension ID",

routeTemplate: "api/{controller}/{id}.{ext}",

defaults: new { id = RouteParameter.Optional, ext = RouteParameter.Optional }

)s

115

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Finally, you can also implement your own custom mapping by inheriting from the MediaTypeMapping base class,
which you can see in Listing 4-26.

Listing 4-26. A Sample Custom MediaTypeMapping
public class MyMediaTypeMapping : MediaTypeMapping

{
protected override double OnTryMatchMediaType(HttpResponseMessage response)
{
HttpRequestMessage request = response.RequestMessage;
//check whatever you want in the request to determine the response type
}
}

In this case, you have to define the match accuracy by a double value, where 1.0 is the 100% accurate match.

4-10. Serve Binary Data from ASP.NET Web API
Problem

You would like to serve binary content directly from the API, rather than have it delivered by your underlying web
server. It might be dynamically generated images, text files, or any other form of processed data, which is quite
common in web frameworks.

Solution

There are four principle ways of returning binary data from Web API, and they are represented by four types derived
from the base HttpContent class, which can be used to send a response to the client:

e StreamContent

e ByteArrayContent
e MultipartContent
e PushStreamContent

To set these types of content on the body, you have to move away from the usual mode of returning a DTO from
controller actions (and letting the framework serialize it for you), and take full control over the pipeline by producing
an HttpResponseMessage directly or leveraging IHttpActionResult. It is important to emphasize that once you do
that, the response message will bypass all the MediaTypeFormatters you might have registered in your application.

This is done on purpose, as you certainly wouldn’t want a formatter trying to serialize your binary data to JSON,
for example.

How It Works

ASP.NET Web AP], contrary to what the name may suggest, is not an API engine only, but rather a fully-fledged web
framework (or rather, an HTTP framework) capable of doing much more than just exposing an entry point to your
system in the form of API endpoints.

This approach to dealing with static files is also necessary when you are self-hosting ASP.NET Web AP]I, as it will
not have any other way of serving files because no underlying web server is involved (TCP/HTTP capabilities are
provided using WCF core or HttpListener).

116

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

The Code

The following sections will discuss the usage of StreamContent, ByteArrayContent, and MultipartContent, and will
briefly touch on PushStreamContent.

StreamContent

A simple example of using StreamContent to fetch a file from the local drive is shown in Listing 4-27. All you need

to do is read the file stream from somewhere, create a new HttpResponseMessage, and set the stream to be the content
of the response. Additionally, though not mandatory, you should provide Content-Type header with the media type
relevant for a given file type.

Listing 4-27. A Sample Controller Serving Binary Data as StreamContent

public HttpResponseMessage Get(string filename)
{
var path = Path.Combine(ROOT, filename);
if (!File.Exists(path))
throw new HttpResponseException(Request.CreateErrorResponse(HttpStatusCode.NotFound));

var result = new HttpResponseMessage(HttpStatusCode.OK);

var stream = new FileStream(path, FileMode.Open);

result.Content = new StreamContent(stream);

result.Content.Headers.ContentType = new MediaTypeHeaderValue("application/octet-stream");
return result;

Tip You do not have to explicitly close the FileStream as the framework will dispose of it for you.

With StreamContent you are able to facilitate most of the scenarios requiring binary data over HTTP. You could
use those types of actions to replace traditional HTTP Handler-based solutions. This also mirrors the FileResult
functionality that many developers are familiar with from ASP.NET Web MVC.

As mentioned before, if you are using a self-hosted version of Web API, you will not have the luxury of a web
server that you can rely on for serving static files, so all files you'd like to use would have go through this type of
endpoint.

Note When using StreamContent, ASP.NET Web API will not buffer the response.

ByteArrayContent

Another way of serving binary data is through the use of ByteArrayContent. Because the concepts of Stream and
byte[] are closely related, this is pretty much identical to the previous example. The main difference is that ASPNET
Web API will not buffer the response, which is a Stream, whereas the byte array is already buffered anyway.

You can easily imagine situations when the data you may want to return is already available as an array of bytes
(rather than some sort of a MemoryStream which would need to be read). In such situations, the byte[] can be directly
set as the content of the HttpResponseMessage, without the need of conversion to a Stream. See Listing 4-28.

117

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Listing 4-28. A Sample Controller Serving Binary Data as ByteArrayContent

public HttpResponseMessage Get(string filename)
{

byte[] data = GetFromSomewhere(filename);
if (data = null)
throw new HttpResponseException(Request.CreateErrorResponse(HttpStatusCode.NotFound));

var result = new HttpResponseMessage(HttpStatusCode.OK);

result.Content = new ByteArrayContent(data);

result.Content.Headers.ContentType = new MediaTypeHeaderValue("application/octet-stream");
return result;

MultipartContent

Multipart content allows you to package together a number of files and send them together with clear boundaries
between the chunks of binary data representing each file. This in turn allows the consumer of the message to easily
extract the relevant files. See Listing 4-29 for an example.

Listing 4-29. A Sample Controller Serving Binary Data as MultipartContent

public HttpResponseMessage Get(string filel, string file2)

{
var fileA = new StreamContent(new FileStream(Path.Combine(ROOT,file1l), FileMode.Open));
fileA.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg");
var fileB = new StreamContent(new FileStream(Path.Combine(ROOT,file2), FileMode.Open));
fileA.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg");
var result = new HttpResponseMessage(HttpStatusCode.OK);
result.Content = new MultipartContent();
result.Content.Add(fileA);
result.Content.Add(fileB);
return result;
}

While the example is very trivial, it illustrates the technique well. Inside MultipartContent you can also mix
traditional ObjectContent with binary data, which is often used to transfer files along with some metadata.

PushStreamContent

Finally, you can also push down chunks of unbuffered data to the client asynchronously in the form of
PushStreamContent. This used to be a distinct feature of Web API, as it requires IAsyncHttpHandler, and many other
popular frameworks (ServiceStack, NancyFX) weren’t originally built on one (this has since changed). Due to its
unique nature, PushStreamContent is discussed in detail separately in Recipe 8-4.

118

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Note All of the examples shown here could easily be converted into a specialized IHttpActionResult, as
demonstrated in Recipe 4-8. From a unit testing perspective, using IHttpActionResult is recommended.

4-11. Accept File Uploads
Problem
You would like to accept file uploads through your ASP.NET Web API service.

Solution

ASP.NET Web API exposes several implementations of the MultipartStreamProvider class to facilitate file uploads.
In order to write directly to a path on the server, you can use

e MultipartFileStreamProvider, if you are creating an upload only endpoint.

e MultipartFormDataStreamProvider, if you are going to be dealing with HTML form and you
expect the client to send a content-disposition header.

In order to write directly to the MemoryStream (no I/0), you can use
e MultipartMemoryStreamProvider.

e MultipartFormDataStreamProvider, if you know your client will not send a
content-disposition header.

MultipartFileStreamProvider and MultipartMemoryStreamProvider are direct subclasses of
an abstract MultipartStreamProvider, while MultipartFormDataStreamProvider further extends
MultipartFileStreamProvider.

How It Works

The core responsibility of any implementation of MultipartStreamProvider is to convert the contents of incoming
HTTP request into a Stream.

MultipartFileStreamProvider and MultipartFormDataStreamProvider, since their intent is file I/O,
will try to write the content of the request into a FileStream. In other words, they will physically create a file on
the server, and then expose the stream representing this file for the developer to process further. Additionally,
MultipartFormDataStreamProvider will look for the filename in a Content-Disposition header. If this header is not
present, it will not write to the disk directly (will not use FileStream), but will instead expose the uploaded file as a
MemoryStream only.

MultipartMemoryStreamProvider will always load the contents of the uploaded file into a MemoryStream.

The Code

Let’s explore the code that will allow you to accept file uploads on the disk and into memory in ASP.NET Web APIL.

119

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Upload To Disk

The code to perform a simple disk-targeted upload is rather straightforward.

var streamProvider = new MultipartFileStreamProvider("d:/uploads/");
await Request.Content.ReadAsMultipartAsync(streamProvider);
//the file has been saved to disk now

MultipartFileStreamProvider doesn’t have a parameterless constructor, as it expects you to pass in a path to which
the uploaded file should be saved. The name of the file is automatically generated for security reasons, using the
following snippet from the Web API source code:

String.Format(CultureInfo.InvariantCulture, "BodyPart {0}", Guid.NewGuid());

You can customize this behavior by subclassing the provider and overriding the GetLocalFileName method
(more about this in Recipe 4-13).

To make this example more suitable for real life usage, you can wrap the code in a controller (see Listing 4-30) and
perform some basic integrity validation by checking if the incoming request is MimeMultipartContent. Notice that you
completely skip any Web API model binding and formatters, as you deal with the raw HttpRequestMessage directly.

Listing 4-30. A Basic Controller Accepting Uploads to the Server’s Disk Directly

public class MyController : ApiController

{
public async Task Post()

{
if (!Request.Content.IsMimeMultipartContent())

throw new HttpResponseException(Request.CreateResponse(HttpStatusCode.NotAcceptable,
"This request is not properly formatted"));

var streamProvider = new MultipartFormDataStreamProvider("d:/uploads/");
return await Request.Content.ReadAsMultipartAsync(streamProvider);

The final step is to replace the hard-coded absolute upload path with a dynamic relative one. If you are using web
hosting, you could do that by looking at System.Web.HttpContext.Current:

var path = HttpContext.Current.Server.MapPath("~/uploads/");
In self-hosted scenarios, the easiest way to determine current location is to grab it off the current Assembly:

var path = Assembly.GetExecutingAssembly().Location;

Upload To Memory

The code to accept a file upload directly into memory (Listing 4-31) is very similar, except the fact that once the file is
loaded into a MemoryStreanm, it’s up to you as the developer to handle it further. For example, you may wish to save the
Stream to a database or upload it to cloud storage.

120

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Listing 4-31. A Basic Controller Accepting Uploads to MemoryStream

public class MyController : ApiController

{
public async Task Post()

{
if (!Request.Content.IsMimeMultipartContent())

throw new HttpResponseException(Request.CreateResponse(HttpStatusCode.NotAcceptable,
"This request is not properly formatted"));

var provider = new MultipartMemoryStreamProvider();
await Request.Content.ReadAsMultipartAsync(provider);

foreach (HttpContent ctnt in provider.Contents)

{
//now read individual part into STREAM
var stream = await ctnt.ReadAsStreamAsync();
if (stream.Length != 0)
//handle the stream here
}
}

Once the provider loads the uploaded files into memory, you can access them by looping through the Contents
property; it will be as big as the number of uploaded files by the client.

Interestingly, since ASP.NET Web API relies on the underlying host to deal with requests and their input streams,
if you are web hosting and are comfortable with traditional ASP.NET request handling, you can rely on that too in your
Web API uploads. This is shown in Listing 4-32.

Listing 4-32. Grabbing the Uploaded Stream Directly from the ASP.NET Request

Stream stream = HttpContext.Current.Request.GetBufferlessInputStream();
byte[] bytes = new byte[32*1024];
while ((n = stream.Read(bytes, 0, bytes.Length)) > 0)
{

//process stream

However, this is highly discouraged, and should only be used as a last resort.

IIS AND ASPNET UPLOAD LIMITS

The default maximum 1IS7 and IIS Express upload file size is 30 000 000 bytes (28.6MB). If you try to upload a larger
file, the server response will be a 404.13 error. You can modify it with the maxAllowedContentLength web.config
setting.

<system.webServer>

<security>
<requestFiltering>

121

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

<requestLimits maxAllowedContentlLength="2147483648" />
</requestFiltering>
</security>
</system.webServer>

Moreover, ASP.NET has its own upload file size limit of 4MB. It can be increased by tweaking the
maxRequestLength setting in web.config.

<system.web>
<httpRuntime maxRequestLength="2097152" />
</system.web>

4-12 Enable Bufferless Uploads
Problem

You are uploading large files to your Web API, and would like to allow uploads to be performed in a streamed mode,
rather than being buffered.

Solution

You can provide a customized implementation of the IHostBufferPolicySelector (see Listing 4-33) to explicitly state
whether ASP.NET Web API should use buffering for input and output streams. You are also able to provide a specific
condition that has to be matched for a given behavior to kick in, meaning that parts of your API could be bufferless,
while others not.

Listing 4-33. Definition of IHostBufferPolicySelector

public interface IHostBufferPolicySelector

{

bool UseBufferedInputStream(object hostContext);

bool UseBufferedOutputStream(HttpResponseMessage response);
}
How It Works

ASP.NET Web API in buffered mode holds the entire message in memory, until the transfer between the client and
the server has completed. Streamed (bufferless) mode, on the other hand, only buffers the request/response headers,
while the body is exposed as a stream which can be read in small chunks.

While ASP.NET Web API does a great job of providing a consistent experience between different types of its hosts
(web host, self-host, OWIN host), the buffering story differs a lot between them.

The web host, and its WebHostBufferPolicySelector (web host-specific IHostBufferPolicySelector), relies on
the underlying ASP.NET mechanisms. As a consequence, it can obtain the input stream in a bufferless manner any time
you want, and you can decide on that on a per-request basis. However, out of the box, it’s always buffering requests.

The self-host, which uses WCF under the hood, while it can also support streaming of the requests, can only have
this set globally, for all requests. This particular type of host does not use any IHostBufferPolicySelector at all, and
the customizations have to happen against the HttpSelfHostConfiguration itself.

122

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

The OWIN host utilizes OwinBufferPolicySelector, which by default does not buffer requests. However, since
this behavior essentially relies on the underlying OWIN-compatible server and its capabilities, you may have to tweak
it based on the type of environment you are using.

The Code

The code required to enable bufferless input from the client is specific to the type of host you are using: web host,
self-host, or OWIN host.

Web Host

You can override WebHostBufferPolicySelector, since both of its methods are virtual. The exposed hostContext is
nothing more than HttpContextBase which should be familiar from traditional ASP.NET projects. An example of it is
shown in Listing 4-34.

Listing 4-34. A Sample WebHostBufferPolicySelector That Does Not Buffer Input for Specific Controllers

public class FileUploadBufferPolicySelector : WebHostBufferPolicySelector
{

private static string[] _unbufferedControllers = new[2] { "image", "video" };

public override bool UseBufferedInputStream(object hostContext)

{
var context = hostContext as HttpContextBase;
if (context != null)
{
var controller = context.Request.RequestContext.RouteData.Values["controller"].ToString().
ToLower();
if (_unbufferedControllers.Contains(controller))
return false;
}
return true;
}

public override bool UseBufferedOutputStream(HttpResponseMessage response)

{
}

return base.UseBufferedOutputStream(response);

In this particular example, you designate two controller names, ImageController and VideoController, to
have requests to them handled in a bufferless way. You can use the HttpContextBase, to which you have access,
to pick up the controller name from the RouteData, and match it against your settings. By returning false from the
UseBufferedInputStream method, you are able to tell Web API to stream the request rather than buffer it. Obviously
you are free to choose the rules deciding on buffering as you wish, for example using headers instead.

123

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

RESPONSE STREAMING

In order to facilitate response (output) streaming (rather than buffering) you can simply override the
UseBufferedOutputStream of the IHostBufferPolicySelector.

ASP.NET Web API will not buffer the output for StreamContent (see Recipe 4-10) and PushStreamContent (See
Recipe 8-4) unless its Content-Length is already known. Additionally, when hosting using OWIN, setting the
header Transfer-Encoding to chunked will also disable output buffering.

Registration of the IHostBufferPolicySelector happens against the HttpConfiguration object.

httpConfiguration.Services.Replace(typeof(IHostBufferPolicySelector), new
FileUploadBufferPolicySelector());

Self Host

Since WCF-based self-host does not use IHostBufferPolicySelector at all, the only way to control
streaming/buffering of requests and responses is to use the global TransferMode setting exposed by
HttpSelfHostConfiguration. It can be assigned any of the values of the System. ServiceModel.TransferMode
enumeration; see Table 4-2.

Table 4-2. Available TransferModes and Their Behavior

Mode Behavior

Streamed Both request and response are streamed.
Buffered Both request and response are buffered.
StreamedRequest Only requests are streamed.
StreamedResponse Only responses are streamed.

Unfortunately, this setting is global and there is no way to reliably modify it on a per-request basis, such as to
provide different behavior for different endpoints or client scenarios.

selfHostConfiguration.TransferMode = TransferMode.Streamed;

OWIN Host

Enabling bufferless input is not required with OWIN host, since OwinBufferPolicySelector is streaming requests
by default. However, you can still override its methods to control buffering, but bear in mind this might affect the
behavior of your OWIN pipeline.

The usage with Microsoft’s Project Katana, shown in Listing 4-35, is similar to WebHostBufferPolicySelector,
except the hostContext object, instead of being HttpContextBase, is an I0winContext (Project Katana specific
context). It's relatively easy to adapt the previous example to OWIN; however, since the RouteData is not available
through IOwinContext or its Request property (I0winRequest), you have to resort to different mechanisms when
determining if the request should be buffered. The following example is simply checking for /image/ and /video/ in
the path, which is sufficient for illustration purposes, but in real life scenarios you will probably want to introduce a
more elaborate condition check.

124

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Listing 4-35. A Sample WebHostBufferPolicySelector That Does Not Buffer Input if a Specific URL Part Is Found

public class FileUploadBufferPolicySelector : OwinBufferPolicySelector

{
private static string[] _unbufferedControllers = new[2] { "image", "video" };
public override bool UseBufferedInputStream(object hostContext)
{
var context = hostContext as IOwinContext;
if (context != null)
{
if (_unbufferedControllers.Any(x => context.Request.Uri.AbsolutePath.Contains("/" + x +
ll/ll));
return false;
}

return true;

}

public override bool UseBufferedOutputStream(HttpResponseMessage response)

{

}
}

return base.UseBufferedOutputStream(response);

When the ASP.NET Web API OWIN adapter encounters a policy selector that tells it to not buffer the request,
under the hood it tries to pick up the key server.DisableRequestBuffering from the OWIN environment dictionary.
Unless something modified it explicitly, it should contain an Action object representing a continuation to the next
middleware.

4-13 Validate File Uploads
Problem

You are accepting file uploads to your ASP.NET Web API and would like to validate file extensions before proceeding
with processing the uploaded files.

Solution

Asyou can learn in Recipe 4-11, you may use MultipartMemoryStreamProvider (in memory) or
MultipartFormDataStreamProvider (directly to disk) to facilitate file uploads in Web APIL.

In order to provide some basic validation to the client’s input, you can subclass these providers and override
some of the base methods which allow you to inspect the headers of the incoming HTTP request.

If you inherit from MultipartFormDataStreamProvider, you should override the base GetLocalFileName or
GetStream; if you inherit MultipartMemoryStreamProvider, you have to override the base GetStream method.

125

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

How It Works

When the client uploads a file to the web server, the file name is present in the HTTP request headers, under
Content-Disposition.

Content-Disposition: attachment; filename="someFile.txt"

MultipartFormDataStreamProvider uses GetLocalFileName to provide the uploaded file with some file name.
By default, the name will be random (not whatever the client provides) for security reasons. This is a method specific
for this provider only.

public virtual string GetlLocalFileName(System.Net.Http.Headers.HttpContentHeaders headers)

Both MultipartMemoryStreamProvider and MultipartFormDataStreamProvider also give you access to the
headers in the GetStream method, which you could also use for inspecting the headers for ContentDisposition.

public virtual Stream GetStream(HttpContent parent, HttpContentHeaders headers)

Allin all, by tapping into this process and overriding the relevant method, you are able to deny the upload if the
extension doesn’t match the requirements of your application.

The Code

The preferred way of doing the validation is to use the GetStream method, since, as it is run prior to reading the
uploaded files from the HTTP request, it is more efficient in terms of memory footprint. This is shown in Listing 4-36.

Listing 4-36. An Example of a ValidatedMemoryStreamProvider. If the Extension of the Uploaded File Doesn’t Match
Your Requirement, You Simply Nullify the Stream.

public class ValidatedMemoryStreamProvider : MultipartMemoryStreamProvider

{
private static string[] extensions = new[] { "jpg", "gif", "png"};
public override Stream GetStream(HttpContent parent, HttpContentHeaders headers)
{
var filename = headers.ContentDisposition.FileName.Replace("\"", string.Empty);
if (filename.IndexOf('.') < 0)
return Stream.Null;
var extension = filename.Split('."').Last();
return extensions.Any(i => i.Equals(extension, StringComparison.
InvariantCultureIgnoreCase)) ? base.GetStream(parent, headers) : Stream.Null;
}
}

The other option, available only for MultipartFormDataStreamProvider is, as shown in Listing 4-37. That is, to
use GetLocalFileName and, in case the validation fails, throw an exception which needs to be appropriately handled
outside of the provider.

126

CHAPTER 4 © CONTENT NEGOTIATION AND MEDIA TYPES

Listing 4-37. An Example of a CustomMultipartFormDataStreamProvider

public class CustomMultipartFormDataStreamProvider : MultipartFormDataStreamProvider

{

private static string[] extensions = new[] { "jpg", "gif", "png"};

public CustomMultipartFormDataStreamProvider(string path) : base(path)
(}

public override string GetLocalFileName(HttpContentHeaders headers)

{

var filename = headers.ContentDisposition.FileName.Replace("\"", string.Empty);
if (filename.IndexOf('.') < 0)

throw new Exception("No extension");

var extension = filename.Split('.').Last();
if (lextensions.Any(i => i.Equals(extension, StringComparison.
InvariantCultureIgnoreCase))

throw new Exception("Extension not allowed!");

return base.GetlLocalFileName(headers);

In either case, you have to remember that you are simply validating the filenames and extensions here, and in
general the validity of the HTTP request—not the integrity of the data, as this is beyond scope here.

127

CHAPTER 5

Configuration and Customization -

This chapter deals with configuring some of the features of ASP.NET Web API, as well as improving its processing
pipeline with a number of convenient customizations. In the recipes that you will find in this chapter, I will address
and deal with several common roadblocks that you might encounter when building a custom Web API solution.

In this chapter you will learn how to do the following:

e Apply rate limiting in ASP.NET Web API (Recipe 5-1)
e Configure support for controllers from external assemblies (Recipe 5-2)
e Apply controller-specific HttpConfiguration (Recipe 5-3)

e Validate requests with action filters, override filters, and control the filter execution order
(Recipes 5-4, 5-5, 5-8, and 5-9)

e Add caching to your ASP.NET Web API services (Recipes 5-6 and 5-7)
e Customize the level of error details that Web API exposes (Recipe 5-10)
e Return HTML from ASP.NET Web API (Recipe 5-11)

e Deal with per-request storage requirements (Recipe 5-12)

5-1. Throttle ASP.NET Web API Calls
Problem

You are building a public API and need to introduce rate limiting.

Solution

WebApiContrib, which can be installed from NuGet, provides excellent support for request throttling.
install-package WebApiContrib

To enable throttling for your ASP.NET Web AP]I, you need to provide the following:
e Atimespan which should be used to count calls to the API
e Ahit quota per client

e Optionally, an error message

129

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

The idea behind the WebApiContrib throttling implementation is to intercept every request as early as possible
and then check how many times a client has accessed the API in a given timespan. If the predefined rate is exceeded,
the client is issued a failed response immediately. Due to such design requirements, WebApiContrib throttling
support is implemented as a message handler, which you add to your ASP.NET Web API processing pipeline.

This design also allows you to control at which place the throttling actually happens; for example, you may want
to insert a caching handler or an authentication handler in front of it, so that cached responses will not count against
client’s quota.

How It Works

The throttling handler requires you to pass in a Timespan that will be used to count the API hits, and a Func<string, long>
that should take a user identifier string and return a quota for that given Timespan. Out of the box, the string identifier
is simply an IP of the user, but you can subclass ThrottlingHandler and override it with some other identification
mechanism, such as a username.

The default implementation of throttling uses InMemoryThrottleStore, which persists the quota and hits
count data in-process directly in memory, using a ConcurrentDictionary. If you want to change this, you have to
implement the IThrottleStore interface shown in Listing 5-1. With this interface, it’s possible to back API throttling
with a caching server such as Redis or Windows Azure Cache, which is also a way to support throttling in situations
when your API is distributed across different servers.

Listing 5-1. Definition of IThrottleStore Interface

public interface IThrottleStore

{
bool TryGetValue(string key, out ThrottleEntry entry);
void IncrementRequests(string key);
void Rollover(string key);
void Clear();
}

Tip It’s a good idea to replace the ConcurrentDictionary at least with System.Runtime.Caching.MemoryCache,
as it can automatically expire older entries.

ThrottlingHandler additionally injects two headers into the Web API response, RateLimit-Limit and
RatelLimit-Remaining, informing the client about his current API usage in a given timespan.

In case a quota has been exceeded, the handler will respond with HttpStatusCode.Conflict (status code 409).
If the user cannot be identified, the response from the handler will be HttpStatusCode.Forbidden (status code 403).

The Code

To enable throttling in your API, you need to register the ThrottlingHandler against your HttpConfiguration.
In the example shown in Listing 5-2, the rate limit per user is set to ten calls per minute, and the count is done per IP
(which is the default behavior).

Listing 5-2. Basic ThrottlingHandler Setup

var throttlingHandler = new ThrottlingHandler(
new InMemoryThrottleStore(),
ip => 10,

130

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

TimeSpan.FromMinutes(1),
"Only ten requests per minute allowed")
config.MessageHandlers.Add(throttlingHandler);

To provide rate limiting based on a user identity, you need to override the GetUserIdentifier method. In the
example from Listing 5-3, you reach into the RequestContext to fetch the Principal object associated with the
current request, as that should give you the currently logged in user’s username. In another case, you simply fallback
to the base class, which is the IP-based rate limiting.

Listing 5-3. Throttling in the Context of a User

public class UserAwareThrottlingHandler : ThrottlingHandler
{
public UserAwareThrottlingHandler(IThrottleStore store, Func<string, long>
maxRequestsForUserIdentifier, TimeSpan period, string message)
: base(store, maxRequestsForUserIdentifier, period, message)

{
}
protected override string GetUserIdentifier(HttpRequestMessage request)
{ var user = request.GetRequestContext().Principal;
if (user != null)
{ return user.Identity.Name;
ieturn base.GetUserIdentifier(request);
}

You should now modify the throttling handler registration from Listing 5-2 to the one shown in Listing 5-4.
You change the Func<string, long> thatis used to convert a user identifier to a quota, so that it looks up the limit
configuration for a user in your user data store (here a hypothetical IUserStore is used). If a user is not found, then
you deal with an IP and fall back again to the default of ten calls per minute.

Listing 5-4. Registering a Throttling Handler That Varies the Rate Limit by User

var throttlingHandler = new UserAwareThrottlingHandler(
new InMemoryThrottleStore(),
identifier =>
{
var userStore = config.DependencyResolver.GetService(typeof (IUserStore));
var user = userStore.FindByUsername(identifier);
if (user != null)

{
}

return 10;

return user.Ratelimit;

}
TimeSpan.FromMinutes(1));
config.MessageHandlers.Add(throttlingHandler);

131

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

5-2. Use Controllers from an External Assembly
Problem
You would like your Web API to use controllers that are not part of your ASP.NET Web API project assembly.

Solution

It is quite common, in order to keep the Web API project lean and focused, to create controllers for the API in an
external library. This also allows you to reuse them across different projects.

To introduce your own custom logic responsible for locating the assemblies, ASP.NET Web API allows you to
plug in a custom implementation of IAssembliesResolver. As a matter of convenience, instead of implementing the
interface directly, you can also override the default implementation, DefaultAssembliesResolver. This solution is
shown in Listing 5-5.

Listing 5-5. Including an External Library in the ASPNET Web API Controller Lookup

public class CustomAssembliesResolver : DefaultAssembliesResolver

{
public override ICollection<Assembly> GetAssemblies()
{
var baseAssemblies = base.GetAssemblies().TolList();
var assemblies = new List<Assembly>(baseAssemblies) {typeof (HelloController).Assembly};
return assemblies.Distinct().ToList();
}
}

The resolver is registered against the HttpConfiguration just like any other service.

config.Services.Replace(typeof(IAssembliesResolver), new CustomAssembliesResolver());

How It Works

By default, ASP.NET Web API tries to find controllers by scanning all of the assemblies from the current
AppDomain (Listing 5-6).

Listing 5-6. Default Implementation of IAssembliesResolver

public class DefaultAssembliesResolver : IAssembliesResolver

{
public virtual ICollection<Assembly> GetAssemblies()
{
return AppDomain.CurrentDomain.GetAssemblies().ToList();
}
}

When you are hosting on top of IIS, all of the assemblies located in the server’s bin folder will be loaded into the
AppDomain automatically by ASP.NET, so when you use web host for your Web AP], including controllers from external
libraries can be done by simply dropping those into the bin folder.

132

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

For self-hosted Web API solutions, things are a bit more interesting. In case your API project references the
external library, it will be loaded into the AppDomain only if any code explicitly references it or if you do so by hand
(i.e. through Assembly. LoadFrom method). As a result, when writing a custom resolver like the one in Listing 5-5, it's
generally a good idea to include a Distinct call at the end to make sure you avoid double loading some assemblies or
simply use the resolver as a place to make an explicit code reference to the external assembly.

ASP.NET Web API uses the IAssembliesResolver registered against HttpConfiguration (your custom one
or DefaultAssembliesResolver) in an internal HttpControllerTypeCache type, which is used to cache the list of
discovered controller Types. Afterwards, that cache is used for controller look ups, and IAssembliesResolver is not
consulted anymore. As a consequence, setting a custom IAssembliesResolver in your HttpConfiguration should be
done only at application startup; replacing it at runtime will not have any effect.

The Code

An alternative version to the code from Listing 5-6 is shown in Listing 5-7. In this case, a call to
typeof(HelloController) is enough to force the container Assembly to be loaded into the AppDomain,
and the base DefaultAssembliesResolver will pick the controllers from there.

Listing 5-7. Including an External Library in the ASP.NET Web API Controller Lookup

public class CustomAssembliesResolver : DefaultAssembliesResolver

{
public override ICollection<Assembly> GetAssemblies()
{
//ensures the external Assembly is in the AppDomain by referencing from code
var externalControllers = typeof(HelloController).Assembly);
return base.GetAssemblies();
}
}

On the other hand, if your controllers reside in an unreferenced DLL, you can still include them in the
Web API lookup process, but you will have to load them manually, as shown in Listing 5-8. In this example, the
UnreferencedExternallibrary.dll islocated in the same directory as the currently executing Web API host process.

Listing 5-8. Including Unreferenced Libraries in the Lookup Process

public class CustomAssembliesResolver : DefaultAssembliesResolver

{

public override ICollection<Assembly> GetAssemblies()

{

var baseAssemblies = base.GetAssemblies().ToList();
var assemblies = new List<Assembly>(baseAssemblies);

var unreferencedAssembly = Assembly.LoadFrom(Path.Combine(Path.GetDirectoryName(Assembly.
GetExecutingAssembly().Location), "UnreferencedExternallibrary.d1l"));

assemblies.Add(unreferencedAssembly);

return assemblies;

133

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

5-3. Use Controller-Scoped Configuration
Problem
You want specific ASPNET Web API HttpConfiguration settings to be applied only to selected controllers.

Solution

The most common scenario is to configure ASP.NET Web API settings globally, for the entire application, in the
global HttpConfiguration object. However, ASP.NET Web API also supports controller-scoped configuration. The
framework provides a sealed class called HttpControllerSettings that defines which settings can be overridden or
provided on a controller level, rather than globally.

The controller-scoped configuration is applied through a custom attribute implementing an
IControllerConfiguration (Listing 5-9), which exposes an Initialize method that the Web API pipeline
can invoke to configure your controller.

Listing 5-9. Definition of IControllerConfiguration Interface

public interface IControllerConfiguration

{
void Initialize(HttpControllerSettings controllerSettings, HttpControllerDescriptor
controllerDescriptor);

}

How It Works

The settings that can be customized on a per-controller basis are
e MediaTypeFormatters
e ParameterBinding rules
e Services
These are the properties exposed by HttpControllerSettings, as shown in Listing 5-10; the rest of the
configuration is provided by the global HttpConfiguration, which is passed through the constructor.
Listing 5-10. Definition of HttpControllerSettings

public sealed class HttpControllerSettings

{
public HttpControllerSettings(HttpConfiguration configuration);
public MediaTypeFormatterCollection Formatters { get; }
public ParameterBindingRulesCollection ParameterBindingRules { get; }
public ServicesContainer Services { get; }

}

What happens under the hood is that upon instantiation of a controller, ASP.NET Web API creates a
controller-scoped copy of the global HttpConfiguration. If a controller has any of the above mentioned settings
specified on the controller level, they take precedence and are used; otherwise, the global settings remain unchanged.

The controller-level configuration has to be applied to a controller through a configuration attribute. As a result,
you need to create a new attribute that implements IControllerConfiguration.

134

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

The main reason for doing this through an attribute is that it allows Web API to statically know about the
configuration to be used prior to creating a new instance of the controller for a given request. This in turn makes it
possible for ASPNET Web API to cache and reuse the configuration and not re-create it for every single request (which
would be the case if, for example, the controller configuration was done in a constructor instead of an attribute).

This makes sense because controller configuration really only needs to be read once for a given controller type per
application lifetime. As a result you get, obviously, much better overall performance of your API.

As far as the Web API pipeline is concerned, reading the configuration from the attributes happens inside a
private method called InvokeAttributesOnControllerType in the initialization of an HttpControllerDescriptor for
a given controller Type. This is shown in Listing 5-11. Note that multiple configurations are supported also, as well as
inheritance of the configuration from the base controller.

Listing 5-11. Excerpt from Web API Source Code Responsible for Application of Controller-scoped Configuration
private static void InvokeAttributesOnControllerType(HttpControllerDescriptor controllerDescriptor,
Type type)
{

Contract.Assert(controllerDescriptor != null);

if (type == null)
{

return;

}

// Initialize base class before derived classes (same order as //ctors).
InvokeAttributesOnControllerType(controllerDescriptor, //type.BaseType);

// Check for attribute
object[] attrs = type.GetCustomAttributes(inherit: false);
foreach (object attr in attrs)

var controllerConfig = attr as IControllerConfiguration;
if (controllerConfig != null)

{
var originalConfig = controllerDescriptor.Configuration;
var controllerSettings = new HttpControllerSettings(originalConfig);
controllerConfig.Initialize(controllerSettings, controllerDescriptor);
controllerDescriptor.Configuration = HttpConfiguration.ApplyControllerSettings
(controllerSettings, originalConfig);
}
}
}
The Code

Suppose you would like to have the ability to configure a controller in a way that it would only serve XML content
and, at the same time, log all of its operations using a specific ITracelWriter. The attribute implementing
IControllerConfiguration and providing this functionality is shown in Listing 5-12. You can now selectively apply it
to the relevant controllers without affecting the configuration of any others.

135

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

Listing 5-12. An Example of a Controller-scoped Configuration

public class XmlOnlyAndTraceAttribute : Attribute, IControllerConfiguration

{
public void Initialize(HttpControllerSettings controllerSettings,

HttpControllerDescriptor controllerDescriptor)

{
controllerSettings.Formatters.Clear();
controllerSettings.Formatters.Add(new XmlMediaTypeFormatter());
var traceWriter = new SystemDiagnosticsTraceWriter()
{
MinimumLevel = Tracelevel.Info,
IsVerbose = false
};
controllerSettings.Services.Replace(typeof(ITraceWriter), traceWriter);
}
}
[XmlOnlyAndTrace]
public class TestController : ApiController
{
//class internals omitted for brevity
}

Note The SystemDiagnosticsTraceWriter used in the example comes from Microsoft.AspNet.WebApi.Tracing
NuGet package. See Recipe 7-4 for more information on logging and tracing in ASP.NET Web API.

If you now fire up your Web API, the TestController will be logging its pipeline activities to the trace and
only returning XML response. All other controllers will still be using the global settings provided via the regular
HttpConfiguration, so content negotiation will be in play and no tracing will be happening.

As mentioned, the configuration attributes can be combined together. You could split the example from Listing 5-12
into two separate configuration attributes, a trace-specific one and XML specific one. This is shown in Listing 5-13.

Listing 5-13. Trace Configuration and XML Configuration as Two Separate Attributes

public class TraceAttribute : Attribute, IControllerConfiguration

{
public void Initialize(HttpControllerSettings controllerSettings,
HttpControllerDescriptor controllerDescriptor)
{
var traceWriter = new SystemDiagnosticsTraceWriter()
{
MinimumLevel = Tracelevel.Info,
IsVerbose = false
};
controllerSettings.Services.Replace(typeof(ITraceWriter), traceWriter);
}
}

136

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

public class XmlOnlyAttribute : Attribute, IControllerConfiguration

{
public void Initialize(HttpControllerSettings controllerSettings,
HttpControllerDescriptor controllerDescriptor)
{
controllerSettings.Formatters.Clear();
controllerSettings.Formatters.Add(new XmlMediaTypeFormatter());
}
}

[XmlOnly, Trace]
public class TestController : ApiController

{
}

//class internals omitted for brevity

In this case, both the trace settings and the formatting settings are used by this specific controller. This provides
anice, clean mechanism of isolating individual pieces of configuration logic in relevant classes and combining them
together wherever needed.

5-4. Validate Input with Action Filters
Problem

You would like to move the validation noise such as null checks or ModelState inspection out of your controllers
into a centralized place.

Solution

ASP.NET Web API supports standard DataAnnotations-based validation with a ModelState, like ASP.NET MVC. You
can implement common, repetitive validation tasks using ActionFilterAttributes. By using the aspect-oriented
approach of filters for validation, you can write much cleaner and simpler code in your controllers, which can make
your life much easier—both in the development period and in the long-term maintainability of your application.

In this recipe, you will create two filters, ModelNullCheckTypeAttribute and ValidateModelStateAttribute.
They can then be applied to your actions to provide validation of ModelState and null inspection without the need to
repeat that code inline in the action.

[ValidateModelState]
public void Post(Item item)

[CheckModelForNull]
public void Post([FromBody]string text)

You can even register the filters globally to avoid having to declare them each time; you do this against your
HttpConfiguration, and as a result both of these filters will run on every request:

config.Filters.Add(new ModelNullCheckTypeAttribute());
config.Filters.Add(new ValidateModelStateAttribute());

137

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

How It Works

Filters are certainly familiar to developers with ASP.NET MVC experience. With filters, you can intercept the request
just prior to the action execution and immediately after the execution completes. All these hooks make filters perfect
for implementing generic, repetitive tasks such as (but not limited to)

e Authorization/authentication (see Recipe 10-1)
e Exception handling (see Recipe 7-1)

e Logging

e Validation

e Unit of work management

There are four filter types in ASPNET Web API: action filters, exception filters, authorization filters, and
authentication filters. This recipe focuses only on action filters.
All filters types can be applied at three scope levels:

e Action
e Controller
e Global

When the API pipeline executes a specific action, all applicable filters from all scopes are collected into groups,
and the groups are executed in turns: first, all global filters, then all controller-level filters, and finally action-level
filters. After the action gets executed, the filters get a chance to process the outgoing response in a reverse order.

The bare minimum you should do to write an action filter is to create a class implementing IActionFilter
(shown in Listing 5-14). It exposes a single method called ExecuteActionFilterAsync, which you can use to hook in
the pre- and post-processing logic for the action. However, the async nature of the interface is not very convenient to
implement, so ASP.NET Web API provides a base ActionFilterAttribute class, which you can inherit from.

It exposes both synchronous and asynchronous extension points for plugging in logic to be invoked before and after
action execution. The outline of that class is shown in Listing 5-14 as well.

Listing 5-14. Definitions of IActionFilter Interface and the Abstract ActionFilterAttribute

public interface IActionFilter : IFilter

{
Task<HttpResponseMessage> ExecuteActionFilterAsync(HttpActionContext actionContext,
CancellationToken cancellationToken, Func<Task<HttpResponseMessage>>continuation);

}

public abstract class ActionFilterAttribute : FilterAttribute, IActionFilter

{
public virtual void OnActionExecuting(HttpActionContext actionContext);
public virtual void OnActionExecuted(HttpActionExecutedContext actionExecutedContext);
public virtual Task OnActionExecutingAsync(HttpActionContext actionContext, CancellationToken
cancellationToken);
public virtual Task OnActionExecutedAsync(HttpActionExecutedContext actionExecutedContext,
CancellationToken cancellationToken);

138

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

Caution Unfortunately, MVC filters are members of the System.Web.Mvc.Filters namespace, and Web API filters
are members of the System.Web.Http.Filters, and these two types, even though very similar at first glance, cannot be
used interchangeably when running Web API on top of ASP.NET runtime.

The Code

Let’s look at implementing action filters that validate model state and ensure that the model submitted by the client is
not null.

Validate Model State

One of the most common scenarios for validation is to inspect ModelState. It can become extremely tedious and
troublesome to have to repeat the same check in every single operation dealing with some data input; just have a look
at the example in Listing 5-15. The same ModelState check would have to be done in every other action that takes any
complex input from the client.

Listing 5-15. An Example of Validating ModelState Inline in an Action

public class Item

{
[Required]
public string Name { get; set; }
[MaxLength(3)]
public string Code { get; set; }
}
public void Post(Item item)
{
if (item != null)
{
if (!ModelState.IsValid)
{
throw new HttpResponseException(HttpStatusCode.BadRequest);
}
//do stuff
}
}

You can easily fix the redundancy in your controllers with aspect-oriented programming, checking the state of
the model, prior to the action, inside the ActionFilter (see Listing 5-16) and potentially rejecting the request from
there if it doesn’t meet your requirements, without allowing it to ever reach the action.

139

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

Listing 5-16. An Action Filter That Validates ModelState in a Generic Way

[AttributeUsage(AttributeTargets.Method, Inherited = true)]
public class ValidateModelStateAttribute : ActionFilterAttribute

{
public override void OnActionExecuting(HttpActionContext actionContext)
{
if (!actionContext.ModelState.IsValid)
{
actionContext.Response = actionContext.Request.CreateErrorResponse(HttpStatusCode.
BadRequest, actionContext.ModelState);
}
}
}

In the filter, using the HttpActionContext, you can get access to the current HttpRequestMessage and obtain
the associated ModelState dictionary. If the state of that object is invalid, you return an error response with the
status code 400 (bad request) back to the client, with the ModelState attached, as it will contain the errors from
your DataAnnotations or any other validation logic built around IValidateableObject. This response can then be
inspected by the client and appropriate corrective actions taken on its side.

You can now decorate the actions with the newly created filter. Suppose a client now tries to POST an invalid
object. The API response in this case will be a 400 error code, along with an informative error message. This is shown
in Listing 5-17.

Listing 5-17. Example Response Generated by the Action Filter After the Input from the Client was Invalid

HTTP/1.1 400 Bad Request

Content-Length: 188

Content-Type: application/json; charset=utf-8
Server: Microsoft-HTTPAPI/2.0

Date: Mon, 07 April 2014 22:19:50 GMT

{
"Message":"The request is invalid.",
"ModelState": {
"item.Name":["The Name field is required."],
"item.Code":["The field Code must be a string or array type with a maximum length of '3'."]
}
}

Guarding Against Null

Another common usage scenario for action filters is eliminating null checks. This might mean that either the client
sent an empty body or that the body of the request contained an unexpected payload that could not be correctly
deserialized into a server-side model, and the MediaTypeFormatter handling the request passed null to the action.
You can solve the problem by writing another filter, such as the one shown in Listing 5-18.

140

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

Listing 5-18. An Action Filter Catching Null Action Argument

[AttributeUsage(AttributeTargets.Method, Inherited = true)]
public class CheckModelForNullAttribute : ActionFilterAttribute

{
public override void OnActionExecuting(HttpActionContext actionContext)
{
if (actionContext.ActionArguments.ContainsValue(null))
{
actionContext.Response = actionContext.Request.CreateErrorResponse(HttpStatusCode.BadRequest,
string.Format("The argument cannot be null: {0}", string.Join(",",
actionContext.ActionArguments.Where(i => i.Value == null).Select(i => i.Key))));
}
}
}

In this filter, you check the action arguments to find out whether any of them has been passed as null; if that’s
true, you reject the request with a 400 response too. You use LINQ to find out all null parameters, and then return this
list to the client.

Notice that this attribute is inheritable (just like the previous one), so that they can be applied to any possible
base controller, should you have one.

Now, to use it you simply decorate an action with the attribute and try sending a null value; such request will
be rejected (Listing 5-19). As a result, you no longer have to perform a null check inside an action, as the model is
guaranteed to be not null.

Listing 5-19. Example Response Generated by the Action Filter After the Input from the Client was Null

HTTP/1.1 400 Bad Request

Content-Length: 47

Content-Type: application/json; charset=utf-8
Server: Microsoft-HTTPAPI/2.0

Date: Mon, 06 May 2013 22:23:22 GMT

{"Message":"The argument cannot be null: text"}

It is important to emphasize that even if you use DataAnnotations and explicitly require certain fields on your
model, like we did in Listing 5-15, Mode1State will be considered valid if the entire model is null - as the framework’s
DataAnnotation validation engine will only recognize an error if some specific properties are missing or empty. This
is exactly why you need to combine the two filters shown in this recipe to get full protection of the integrity of the
requests coming to your API.

A final point in this recipe is that Web API does not guarantee the order in which the filters will be run! So you
have to keep that in mind if you try to put some sequential functionality in there. You can also have a look at Recipes 5-8
and 5-9 to work around this issue.

141

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

5-5. Override Filters
Problem

You would like to override filters from a higher scope level at a lower scope level.

Solution

Since ASP.NET Web API 2, the framework ships with a set of override attributes, allowing you to ignore higher scoped
filters wherever needed.
You can override all four types of filters:

e action filters (IActionFilters), with OverrideActionFiltersAttribute
e authentication filters (IAuthenticationFilters), with OverrideAuthenticationAttribute
e authorization filters (IAuthorizationFilters), with OverrideAuthorizationAttribute

e exception filters (IExceptionFilters), with OverrideExceptionAttribute

How It Works

When the base ApiController calls its ExecuteAsync method to execute an action on the controller for a given HTTP
request, it will internally ask HttpActionDescriptor to provide a filter pipeline relevant for this request.

HttpActionDescriptor then returns an instance of an internal type FilterGrouping, which is responsible for
selecting the filters available for that action. If any override is found, it determines which filters lie at a higher scope
level and thus should be ignored. The FilterGrouping then exposes an array of four filter groups, one for each filter
category of action, authorization, authentication, and exception filters.

Filters are then layered on top of one another using custom IHttpActionResult implementations.
If Web API finds any action filters, it wraps the selected action (HttpActionDescriptor) with ActionFilterResult.
If authorization filters are found, the previous IHttpActionResult is wrapped with AuthorizationFilterResult.
Then, if authentication filters are present, the pipeline is further wrapped with AuthenticationFilterResult, and
finally, if some exception filters are present, with ExceptionFilterResult.

This pipeline is executed sequentially, with one IHttpActionResult calling the inner nested IHttpActionResult,
or breaking the processing pipeline if needed.

Unfortunately, filter overriding, while often convenient, is also quite limited. You are not able to override a
specific filter by its Type name; that is, if you override action filters, the entire action filter pipeline from higher scope
levels is going to be excluded from participating in the request processing.

The Code

Listing 5-20 shows a sample AuthorizeAttribute, which denies all unauthenticated users from accessing a
resource it protects.

142

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

Listing 5-20. Definition of DenyAnonymousAttribute, Which Prevents Anonymous Users from Accessing Web API
Actions

public class DenyAnonymousAttribute : AuthorizeAttribute

{
public override void OnAuthorization(HttpActionContext actionContext)
{
if (actionContext.RequestContext.Principal == null)
{
actionContext.Response = new HttpResponseMessage(HttpStatusCode.Unauthorized);
}
}
}

Tip Chapter 10 is dedicated entirely to Web API security, and authorization filters are discussed in detail there.

If you register it globally, every endpoint of your API will be accessible only for authenticated clients.

But what if you want to open up a specific endpoint publicly? This is a perfect example of where filter overriding
can come into play. Listing 5-21 shows a controller with an action that overrides controller/global authorization
filters. In that listing, the GetAll action is still available only for authenticated users, while GetById can now be
accessed by anyone.

Listing 5-21. A Sample Controller Utilizing OverrideAuthorizationAttribute

public class ItemController : ApiController

{
[Route("item")]
public HttpResponseMessage GetAll()

{
}

return Request.CreateResponse(HttpStatusCode.OK);

[OverrideAuthorization]
[Route("item/{id:int}")]

public HttpResponseMessage GetById(int id)
{

}

return Request.CreateResponse(HttpStatusCode.OK, id);

5-6. Add Caching to ASP.NET Web API
Problem

You would like to improve the performance of your ASP.NET Web API service by adding caching of the responses.

143

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

Solution

ASP.NET Web API does not provide any out-of-the-box caching solution, such as OutputCache, which you might be
familiar with from ASPNET MVC. However, it is fairly easy to implement basic caching with ActionFilterAttributes,
since they allow you to define pre- and post-action execution behavior. In the post-execution hook, you can cache the
response of the action, while in the pre-execution, you can check whether the response has already been cached, and if
so, respond with it immediately, rather than let the action execute.

In this recipe, you'll build a CacheAttribute that will allow you to define the length of caching on the server side,
as well as on the client side (that will take effect as Cache-Control header).

[Cache(Client = 10, Server = 10)]
[Route("test")]
public HttpResponseMessage Get()

{

//omitted for brevity
}
How It Works

There are a few things to remember when implementing caching for a Web API. First of all, RFC2616 defines that only
GET and HEAD may be cacheable, so you have to make sure that the caching filters only kick in for those types of
requests.

Secondly, you have to ensure that you do not interfere with content negotiation; since entities returned by your
Web API can have different formats, you will need to cache each representation separately. Similarly, when retrieving
an entity from the cache store, a relevant representation for a given request has to be used.

Finally, even though it’s tempting to attempt to cache the response body as a string, it is safest to cache the byte
array instead, since some actions may attempt to return binary data. It is also the best performing approach, as you
can use that byte array directly as the raw response to be sent to the client without any unnecessary conversion.

A sample wrapper object around the body of the response (byte[]) and a content type (represented in ASP.NET
Web API by MediaTypeHeaderValue instance), suitable for a Web API cache implementation, is shown in Listing 5-22.

Listing 5-22. A Wrapper Class for Response Byte array Content and Its Content Type
public class WebApiCacheItem

{

public WebApiCacheItem(MediaTypeHeaderValue contentType, byte[] content)
{

Content = content;
ContentType = contentType.MediaType;
}

public string ContentType { get; private set; }
public byte[] Content { get; private set; }

public bool IsValid()
{

}

return Content != null 8& ContentType != null;

144

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

The Code

The entire code for CacheAttribute is shown in Listing 5-23. To keep things simple, MemoryCache is used as an

in-process store for cached data. The attribute will expose two public properties: the duration (in seconds) of caching
on the server side, and on the client side. Using public properties rather than fields is a common approach in attribute

development in C#. The attribute decoration is then more verbose, allowing developers to provide values through
the names of the public properties rather than through a constructor, which can often lead to ambiguity and worse

readability.

Listing 5-23. A Caching Action Filter

public class CacheAttribute : ActionFilterAttribute

{

private string _cachekey;
private static readonly ObjectCache Cache = MemoryCache.Default;

public int Server { get; set; }

public int Client { get; set; }

private bool IsCacheable(int property, HttpActionContext ac)
{ ?F (property <= 0)

return false;

}

if (ac.Request.Method == HttpMethod.Get || ac.Request.Method == HttpMethod.Head)

return true;

return false;

}

private CacheControlHeaderValue GetClientCache()
{

var cachecontrol = new CacheControlHeaderValue

{

MaxAge = TimeSpan.FromSeconds(Client),
MustRevalidate = true

};

return cachecontrol;

}

public override void OnActionExecuting(HttpActionContext actionContext)

{

if (IsCacheable(Server, actionContext))

{

var accept = actionContext.Request.Headers.Accept.FirstOrDefault() ??

new MediaTypeHeaderValue("application/json");

_cachekey = string.Format("{0}|{1}", actionContext.Request.RequestUri.PathAndQuery, accept);

145

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

var cachedResponseContent = Cache.Get(_cachekey) as WebApiCacheItem;
if (cachedResponseContent == null || !cachedResponseContent.IsValid()) return;

actionContext.Response = actionContext.Request.CreateResponse();
actionContext.Response.Content = new ByteArrayContent(cachedResponseContent.Content);
actionContext.Response.Content.Headers.ContentType = new MediaTypeHeaderValue
(cachedResponseContent.ContentType);

if (IsCacheable(Client, actionContext))
{

}

actionContext.Response.Headers.CacheControl = GetClientCache();

}

public async override Task OnActionExecutedAsync(HttpActionExecutedContext
actionExecutedContext, CancellationToken cancellationToken)

{
if (!Cache.Contains(_cachekey))
{
var body = await actionExecutedContext.Response.Content.ReadAsByteArrayAsync();
var cacheltem = new WebApiCacheItem(actionExecutedContext.Response.Content.Headers.
ContentType, body);
Cache.Add(_cachekey, cacheItem, DateTime.Now.AddSeconds(Server));
}
if (IsCacheable(Client, actionExecutedContext.ActionContext))
{
actionExecutedContext.ActionContext.Response.Headers.CacheControl = GetClientCache();
}
}

It’s important to emphasize that designing a complete caching framework is beyond the scope of this recipe, and
several simplifications had to be made in this implementation. For a mature open source caching implementation,
see Recipe 5-7.

Let’s walk through the code quickly, starting with OnActionExecuting. If the request is cacheable, you will
construct a cache key from the full URL used by the client (actionContext.Request.RequestUri.PathAndQuery)
and the Accept header, representing the media type the client is interested in. In case there is no Accept header,
application/jsonis used by default. This is a way to guarantee that you won’t respond to a specific media type
request with a wrong format.

Tip Ideally, instead of trusting the Accept header from the client, you’d perform a manual content negotiation
(discussed in Recipe 4-7) here to determine the real expected media type. The solution from Recipe 5-7 will use
just that.

146

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

You then try to fetch the entry from the cache and, if something is found there, you use it to respond to the client
with the appropriate Content-Type being set. Since the cached item stores content as byte[], you can conveniently
use ByteArrayContent as the HttpContent on the HttpResponseMessage. Finally, the Cache-Control header is
correctly set using CacheControlHeaderValue composed from the values defined when the CacheAttribute was used
to decorate an action. Notice that when you respond with the cached response, the request will never hit the action.

On the opposite side of the spectrum, in the OnActionExecutedAsync method, so after the action completes,
you check if the cache contains an entry already, and if it doesn’t, you cache an instance of WebApiCacheItem using
ReadAsByteArrayAsync method as a way to read the body of the response (HttpContent) to a byte array. Similarly as
before, you also apply client-side caching headers.

Note Support for asynchronous overrides was only introduced on ActionFilterAttribute in Web APl 2.1.

5-7. Use an Existing Caching Library
Problem

You want to add caching to your ASPNET Web API but do not want to build the whole infrastructure by hand.

Solution

You can use the popular Strathweb.CacheOutput library, which can be installed from NuGet:
install-package Strathweb.CacheOutput.WebApi2

The library provides very similar functionality and behavior to OutputCacheAttribute from System.Web.
You can use it to decorate your actions with a predefined caching strategy for both server and client.

How It Works

Internally, the library uses a similar approach to that discussed in Recipe 5-6, as it implements caching with action
filters and stores the content of your responses as byte arrays that can be used later to quickly respond to the client.
Moreover, since it is filter-based, there is no need to enable, register, or activate anything else; just decorating the
actions with caching attribute is enough to get started.

In addition to caching your responses, CacheOutput library also supports flexible cache invalidation, which can
be done in three ways:

e UsingAutoInvalidateCacheOutputAttribute at the controller level
e Using InvalidateCacheOutputAttribute with an action name as argument, at the action level
e Manually inside the action body

By default, the library uses MemoryCache from System.Runtime.Caching to store your data in process. You can
create custom providers by implementing the IApiOutputCache interface, shown in Listing 5-24.

147

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

Listing 5-24. Defintion of the IApiOutputCache Interface

public interface IApiOutputCache

{

T Get<T>(string key) where T : class;

object Get(string key);

void Remove(string key);

void RemoveStartsWith(string key);

bool Contains(string key);

void Add(string key, object o, DateTimeOffset expiration, string dependsOnKey = null);
}

You can register your new provider for CacheOutput through the ASP.NET Web API HttpConfiguration object,
and replace the default in-memory implementation (this is shown in Listing 5-25). The provider can also be registered
against an Inversion of Control resolver and as long as you use a Web API IoC adapter, it will be picked up from there.
For more details on IoC and Web API, see Chapter 10.

Listing 5-25. Registration of a Custom IApiOutputCache

//instance
configuration.CacheOutputConfiguration().RegisterCacheOutputProvider(() => new MyCache());

//singleton
var cache = new MyCache();
configuration.CacheOutputConfiguration().RegisterCacheOutputProvider(() => cache);

There are already community-developed providers for Microsoft Azure Cache and MongoDB. An
additional interesting customization is the ability to introduce your own cache key strategy by implementing an
ICacheKeyGenerator

CacheOutput does not support entire client-side RFC2616 HTTP Caching implementation, but it will issue
Cache-Control headers (max-age) and does support ETags. If C1ientTimeSpan on your action is a positive number,
the client will be issued an ETag, which he can then use in an IT-None-Match header of subsequent requests. The
example is shown in Listing 5-26.

Listing 5-26. Sample Request to an Action Cached with CacheOutput, with a Response Containing an Etag, Followed
by Another Request Involving the If-None-Match

//initial request
GET /api/item
Accept: application/json

Status Code: 200

Cache-Control: max-age=100

Content-Length: 5

Content-Type: application/json; charset=utf-8
Date: Wed, 15 Apr 2014 03:37:11 GMT

ETag: "515C29C2-04A4-4DD6-B38D-3513E52ABE8D"
Server: Microsoft-HTTPAPI/2.0

Body: "Hello"

148

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

//next request

GET /api/item

Accept: application/json

If-None-Match: "515C29C2-04A4-4DD6-B38D-3513E52ABE8D"

Status Code: 304

Cache-Control: max-age=100
Content-Length: 0

Date: Wed, 15 Apr 2014 03:37:19 GMT
Server: Microsoft-HTTPAPI/2.0

Note To learn more about all features of CacheOutput, head over to the project’s readme at
https://github.com/filipw/AspNetWebApi-OutputCache.

The Code

Two sample actions using Strathweb.CacheOutput are shown in Listing 5-27. Both methods are cached for 1 minute
on both the client and the server side. You can also specify, by passing in AnonymousOnly flag like the Get method
does, that cache should only kick in for anonymous users. CacheOutput will then check the presence of the Principal
object on the incoming HTTP requests.

Listing 5-27. Sample Usage of CacheOutput

[CacheOutput(ClientTimeSpan = 60, ServerTimeSpan = 60)]
[Route("test/{id:int}")]
public TestItem GetById(int id)

{
Console.WriteLine("hitting get by id");
var item = Items.FirstOrDefault(x => x.Id == id);
if (item == null) throw new HttpResponseException(HttpStatusCode.NotFound);
return item;
}

[CacheOutput(ClientTimeSpan = 60, ServerTimeSpan = 60, AnonymousOnly = true)]
[Route("test")]
public List<TestItem> Get()
{
Console.WriteLine("hitting get");
return Items;

Listing 5-28 shows two controllers taking advantage of the auto-invalidation capabilities and a third controller
performing manual invalidation through an instance of cache obtained from HttpConfiguration.

149

https://github.com/filipw/AspNetWebApi-OutputCache

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

Listing 5-28. Examples of Invalidating Cache with CacheOutput

[AutoInvalidateCacheOutput]
public class ItemController : ApiController

{

[CacheOutput(ServerTimeSpan = 60)]
public IEnumerable<Item> Get()

{
}

public void Post(Item value)
{

}

//omitted for brevity

//omitted for brevity

}

public class ItemController : ApiController

{
[CacheOutput(ClientTimeSpan = 50, ServerTimeSpan = 50)]

public IEnumerable<Item> Get()
{

}

[CacheOutput(ClientTimeSpan = 50, ServerTimeSpan
public IEnumerable<Thing> GetThings(int id)

{
}

[InvalidateCacheOutput("Get")]
public void Post(Team value)

{

//omitted for brevity

50)]

//omitted for brevity

//omitted for brevity
//this invalidates Get action cache

public void Put(int id, Item value)
{

//do stuff, update resource etc.

//now get cache instance
var cache = Configuration.CacheOutputConfiguration().GetCacheOutputProvider(Request);

//and invalidate cache for method "Get" of "ItemController"

cache.RemoveStartsWith(Configuration.CacheOutputConfiguration().MakeBaseCachekey
((ItemController t) => t.Get()));

150

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

In the first case, AutoInvalidateCacheOutputAttribute forces all GET responses to be invalidated as soon as
any other HTTP method is invoked on that controller. In the second controller, InvalidateCacheOutputAttributeis
applied on an action level, and can give you specific control over which particular cache should be invalidated - in
this case it’s invalidating the Get action cache. Finally, you can also invalidate manually inline, by calling
CacheOutputConfiguration().GetCacheOutputProvider() on the current HttpConfiguration object from within
the action context, as that will give you access to the cache instance.

5-8. Order Filter Execution with Custom Filters
Problem

You need to control the execution order of Web API filters.

Solution

In ASPNET MVC, you can predefine the execution order of the filters applied globally to a controller or an action by
using an Order property, which all filters have. Unfortunately, this functionality is not built into ASPNET Web AP],
and the framework does not guarantee that filters will be executed in the order they were statically defined in the
code. You can still provide this functionality yourself, by introducing a custom base attribute from which all filters will
inherit and a custom IFilterProvider which will be used to order the filter pipeline for each request.

However, this mechanism will only work with the filters you own, since you'd have to inherit all of them from the
common base class. Should you want to use third-party filters (i.e. from the WebApiContrib project), you are better
suited looking at Recipe 5-9.

How It Works

When an ASP.NET Web API action is executed, an HttpActionDescriptor instance representing that action queries
the registered IFilterProviders to obtain a collection of filters that should be applied to the current execution
process. IFilterProvider is a very simple, single-method interface (see Listing 5-29) and a collection of such
providers is registered against HttpConfiguration. Out of the box, ASE.NET Web API uses a separate provider for
retrieving controller/action filters (ActionDescriptorFilterProvider) and a separate one to retrieve global filters
(ConfigurationFilterProvider).

Listing 5-29. Definition of IFilterProvider Interface

public interface IFilterProvider

{

IEnumerable<FilterInfo> GetFilters(HttpConfiguration configuration, HttpActionDescriptor
actionDescriptor);
}

All filters in the ASP.NET Web API implement IFilter interface and in all internal operations are represented
by a FilterInfo class. FilterInfo contains an instance of IFilter and its scope information (global, controller, or
action) depending on which level the filter is declared. All of these types are shown in Listing 5-30.

151

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

Listing 5-30. Definitions of IFilter, FilterInfo, and FilterScope

public interface IFilter

{
bool AllowMultiple { get; }
}
public sealed class FilterInfo
{
public FilterInfo(IFilter instance, FilterScope scope)
{
if (instance == null)
{
throw Error.ArgumentNull("instance");
}
Instance = instance;
Scope = scope;
}
public IFilter Instance { get; private set; }
public FilterScope Scope { get; private set; }
}
public enum FilterScope
{
Global = o,
Controller = 10,
Action = 20,
}

In order to implement custom ordering, you will have to create a custom IFilterProvider, as well as introduce
a custom class mimicking the behavior of FilterInfo, acting as a wrapper for the filter instance and its scope
information. Under ideal circumstances you would not have do that, but unfortunately the default FilterInfo used

by ASP.NET Web API is sealed and cannot be extended.

The Code

The base filter needed to facilitate the functionality discussed in this recipe is shown in Listing 5-31. Notice that
it inherits from ActionFilterAttribute, which also automatically means that it will work only with this filter
family. If you want to support others (AuthorizationFilterAttribute, AuthenticationFilterAttribute,

ExceptionFilterAttribute) you need to subclass them separately.

The base filter introduces the Order property, which you'll use to sort the filters and compare them

against one another.

152

Listing 5-31. A Base OrderedActionFilterAttribute, a Prerequisite for Providing the Filter Ordering Functionality

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

public abstract class OrderedActionFilterAttribute : ActionFilterAttribute

{

public int Order { get; set; }

public OrderedActionFilterAttribute() : this(-1)

(3
public OrderedActionFilterAttribute(int order)
{
Order = order;
}

The custom FilterInfo (Listing 5-32) will implement IComparable and you'll use it to compare filters against

each other using the Order property.

Listing 5-32. Custom IFilterInfo Capable of Sorting OrderedActionFilterAttributes

public class CustomFilterInfo : IComparable

{

public CustomFilterInfo(IFilter instance, FilterScope scope)
{

Instance = instance;

Scope = scope;

FilterInfo = new FilterInfo(Instance, Scope);

}
public CustomFilterInfo(FilterInfo filterInfo)
{
Instance = filterInfo.Instance;
Scope = filterInfo.Scope;
FilterInfo = filterInfo;
}

public IFilter Instance { get; set; }
public FilterScope Scope { get; set; }
public FilterInfo FilterInfo { get; set; }

public int CompareTo(object obj)
{
if (obj is CustomFilterInfo)

var item = obj as CustomFilterInfo;

if (item.Instance is OrderedActionFilterAttribute)

{

var itemAttribute = item.Instance as OrderedActionFilterAttribute;
var thisAttribute = Instance as OrderedActionFilterAttribute;

153

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

if (thisAttribute != null)
return thisAttribute.Order.CompareTo(itemAttribute.Order);

}

throw new ArgumentException("Object is of wrong type");

CustomFilterInfo also publicly exposes the FilterInfo that it wraps, as you will need to unwrap it later.

The next step is to add a filter provider that will respect the Order property, such as the one shown in
Listing 5-33. It has a single method called GetFilters, which uses the current HttpActionDescriptor and a relevant
HttpConfiguration to produce a list of filters to be used within the given request processing.

Listing 5-33. Custom IFilterProvider Responsible for Retrieving the Filter Pipeline and Sorting It

public class OrderBasedFilterProvider : IFilterProvider

{
public IEnumerable<FilterInfo> GetFilters(HttpConfiguration configuration, HttpActionDescriptor

actionDescriptor)
if (configuration == null)

throw new ArgumentNullException("configuration");

}

if (actionDescriptor == null)

{
}

var customActionFilters = actionDescriptor.GetFilters().Select(i => new CustomFilterInfo(i,
FilterScope.Action));

var customControllerFilters = actionDescriptor.ControllerDescriptor.GetFilters().Select(i =>
new CustomFilterInfo(i, FilterScope.Controller));

var customGlobalFilters = configuration.Filters.Select(i => new CustomFilterInfo(i));

throw new ArgumentNullException("actionDescriptor");

var result = (customControllerFilters.Concat(customActionFilters).
Concat(customGlobalFilters)).OrderBy(i => i).Select(i => i.FilterInfo);
return result;

Action-scoped filters can be obtained from HttpActionDescriptor and controller-scoped filters can be
obtained from HttpControllerDescriptor, which is available as a property on the HttpActionDescriptor. Finally,
global filters are accessible via the HttpConfiguration object. All of the filters are temporarily wrapped in the
CustomFilterInfo class to support sorting.

You are able to apply the regular LINQ OrderBy expression to the concatenated collection of filters, since it’s a
collection of CustomFilterInfo that implements IComparable and therefore can be sorted. Then, to conform to the
requirement of the IFilterProvider interface, you project the result to FilterInfo, which is available as a public
property on CustomFilterInfo.

154

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

It's important to note that even though the filters are now sorted, HttpActionDescriptor will still group them
into the relevant scope groups of Action, Controller, and Global levels. This means that whatever sorting based on
the Order property you have done will be applied within the group only, while the built-in ASP.NET Web API filter
precedence will be preserved, and the filters will still be executed in the following group order:

1. Global
2. Controller
3. Action

If you need to apply sorting across different scopes, you can assign all of the filters to the same group (doesn’t
matter which) in the CustomFilterInfo, for example Global:

var customActionFilters = actionDescriptor.GetFilters().Select(i => new CustomFilterInfo(i,
FilterScope.Global));

var customControllerFilters = actionDescriptor.ControllerDescriptor.GetFilters().Select(i =>
new CustomFilterInfo(i, FilterScope. Global));

var customGlobalFilters = configuration.Filters.Select(i => new CustomFilterInfo(i));

In this case, since all of the filters are treated as global, they will be sorted amongst themselves using the Order
property, and the default precedence of filter groups will not be applied anymore.

The usage of the solution is shown in Listing 5-34. Filters can now be ordered using an Order property, as long as
they inherit from the common OrderedActionFilterAttribute and the OrderBasedFilterProvider is registered in
the global configuration in place of the default IFilterProviders: ActionDescriptorFilterProvider (responsible
for controller and action filters) and ConfigurationFilterProvider (responsible for global filters).

Listing 5-34. Sample Usage of the Ordering Mechanism and Its Registration Against HttpConfiguration

[MyFilter(Order = 3)]

[MyFilter(Order = 2)]

[MyFilter(Order = 1)]

public class TestController : ApiController
{

[MyFilter(Order = 2)]
[MyFilter(Order = 1)]
[MyFilter(Order = 3)]

public HttpResponseMessage Get()
{

}

//omitted for brevity

}

config.Services.Add(typeof(IFilterProvider), new OrderBasedFilterProvider());
var providers = config.Services.GetFilterProviders();

var defaultprovider = providers.First(i => i is ActionDescriptorFilterProvider);
config.Services.Remove(typeof(IFilterProvider), defaultprovider);

var configprovider = providers.First(i => i is ConfigurationFilterProvider);
config.Services.Remove(typeof(IFilterProvider), configprovider);

155

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

5-9. Order Filter Execution Without Custom Filters
Problem

You want to be able to sort the filters in your Web API regardless of the base class they use.

Solution

Since the filters that are built into ASP.NET Web API do not have any ordering property, you'll have to provide
instructions on how to order them in a different way. I already discussed one solution in Recipe 5-8; this is an
alternative approach.

You can create a map (dictionary) of order priority and a filter Type, and store them in the HttpConfiguration of
your Web API. You are then able to build a custom IFilterProvider that will extract the ordering mapping from the
HttpConfiguration and order the filter pipeline accordingly.

How It Works

You can learn more about the Properties dictionary (Dictionary<string, object>) of HttpRequestMessage, which
is suitable for per-request storage, in Recipe 5-12. Similarly, ASP.NET Web API provides a Properties dictionary (also
aDictionary<string, object>)on the HttpConfiguration class, which facilitates application-wide global storage,
helping you to avoid global static containers and similar singleton constructs.

The other principles behind using a custom IFilterProvider are the same as in Recipe 5-8; you can sort the
filters in your filter provider, and the HttpActionDescriptor is going to respect that.

The Code

Consider the setup shown in Listing 5-35; you add a Dictionary<Type, int> totheHttpConfiguration Properties
under a predefined key, "FilterOrder". The number represents the order weight of the filter. The actual filter
implementations used here are irrelevant (they are here for illustration reasons) but you ensure that LogAttribute is
always executed first and CacheAttribute second.

Listing 5-35. Setting Up Filter Ordering Map in HttpConfiguration

config.Properties["FilterOrder"] = new Dictionary<Type, int>

{typeof (LogAttribute), 1},
{typeof (CacheAttribute), 2}

};

The filter provider, which is going to extract this information and reorder the filters accordingly, is shown in
Listing 5-36. In case a filter is not found in the mapping, it gets a large ordering number (999), which effectively means
it will be executed at the end, after the filters from the mapping.

Since the map can take in any Type, this is a technique you can use to order filters you do not own as well. Notice
that, contrary to the example from Recipe 5-8, there is no need to introduce a customized FilterInfo anymore, since
the ordering comes from outside of the filter instance now.

156

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

Listing 5-36. Implementation of MappingBasedFilterProvider

public class MappingBasedFilterProvider : IFilterProvider

{
public IEnumerable<FilterInfo> GetFilters(HttpConfiguration configuration, HttpActionDescriptor
actionDescriptor)
{
if (configuration == null)
{
throw new ArgumentNullException("configuration");
}
if (actionDescriptor == null)
{
throw new ArgumentNullException("actionDescriptor");
}
var actionFilters = actionDescriptor.GetFilters().Select(i => new FilterInfo(i,
FilterScope.Action));
var controllerFilters = actionDescriptor.ControllerDescriptor.GetFilters().Select(i =>
new FilterInfo(i, FilterScope.Controller));;
var globalFilters = configuration.Filters.Where(i => i.Scope == FilterScope.Global);
var result = actionFilters.Concat(controllerFilters).Concat(globalFilters).Distinct().Tolist();
object filterMap;
if (configuration.Properties.TryGetValue("FilterOrder", out filterMap))
{
var dictionaryFilterMap = filterMap as Dictionary<Type, int>;
if (dictionaryFilterMap != null)
{
var orderedFilters = new List<KeyValuePair<FilterInfo, int>>();
result.ForEach(x =>
{
int position;
if (dictionaryFilterMap.TryGetValue(x.Instance.GetType(), out position))
{
orderedFilters.Add(new KeyValuePair<FilterInfo, int>(x, position));
}
else
{
orderedFilters.Add(new KeyValuePair<FilterInfo, int>(x, 999));
}
D;
result = orderedFilters.OrderBy(x => x.Value).Select(x => x.Key).TolList();
}
}
return result;
}
}

157

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

The usage example is shown in Listing 5-37 and involves simply decorating the action/controller with the
relevant attribute and replacing the default IFilterProviders with MappingBasedFilterProvider. In both the action
and controller case, LogAttribute will be executed before CacheAttribute, while SomeOtherFilterAttribute, since
it's not part of the map (don’t forget to add the map from Listing 5-35), will be executed last.

Listing 5-37. Sample Usage and Registration of Filter Ordering with MappingBasedFilterProvider

[Cache]

[Log]
public class TestController : ApiController

[
[
[Log]
public HttpResponseMessage Get()
{

//omitted for brevity

}

config.Services.Add(typeof(IFilterProvider), new MappingBasedFilterProvider());
var providers = config.Services.GetFilterProviders();

var defaultprovider = providers.First(i => i is ActionDescriptorFilterProvider);
config.Services.Remove(typeof(IFilterProvider), defaultprovider);

var configprovider = providers.First(i => i is ConfigurationFilterProvider);
config.Services.Remove(typeof(IFilterProvider), configprovider);

5-10. Customize Error Detail Policy
Problem

You would like to customize and control the verbosity of error messages returned by your ASP.NET Web API service.

Solution

The core setting that allows you to really easily control the verbosity of ASP.NET Web API errors (as well as your own
exceptions thrown in a Web API application) is the IncludeErrorDetailPolicy enumeration. It's applied globally to
the HttpConfiguration, typically at application startup (you can also change it at runtime, but the new value will still
apply globally to all requests) and can take one of the following values:

e IncludeErrorDetailPolicy.Default
e IncludeErrorDetailPolicy.LocalOnly
e IncludeErrorDetailPolicy.Always

e IncludeErrorDetailPolicy.Never

158

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

How It Works

IncludeErrorDetailPolicy is a property on HttpConfiguration (see Listing 5-38), so in order to globally configure
your Web API error detail level, you can do it there.

Listing 5-38. Definition of HttpConfiguration

public class HttpConfiguration : IDisposable
{
public HttpConfiguration();
public HttpConfiguration(HttpRouteCollection routes);

public IDependencyResolver DependencyResolver { get; set; }

public HttpFilterCollection Filters { get; }

public MediaTypeFormatterCollection Formatters { get; }

public IncludeErrorDetailPolicy IncludeErrorDetailPolicy { get; set; }
public Action<HttpConfiguration> Initializer { get; set; }

public Collection<DelegatingHandler> MessageHandlers { get; }

public ParameterBindingRulesCollection ParameterBindingRules { get; internal set; }
public ConcurrentDictionary<object, object> Properties { get; }

public HttpRouteCollection Routes { get; }

public ServicesContainer Services { get; internal set; }

public string VirtualPathRoot { get; }

public void Dispose();

protected virtual void Dispose(bool disposing);

Setting it to IncludeErrorDetailPolicy.LocalOnly implies that error details are only shown by ASP.NET Web
API when requests originate from localhost or 127.0.0.1. A sample Web API error without any details would look
like this:

{
"Message": "No HTTP resource was found that matches the request URI 'http://localhost/api/
myresource"'."
}
The same error, for local requests, would contain a details property, like so:
{

"Message": "No HTTP resource was found that matches the request URI 'http://localhost/api/
myresource'.",

"MessageDetail": "No type was found that matches the controller named 'myresource'."
}

If the error is produced by the user, not by ASP.NET Web API internal processing pipeline, you'd additionally get a
stack trace.

For IncludeErrorDetailPolicy.Always, every single request gets maximum error details in response. This is
particularly useful during development (as you’d also get stack traces), especially when the development doesn’t
happen on localhost but rather on a remote IP, or even for QA testing, but should definitely be avoided in live
environments.

159

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

IncludeErrorDetailPolicy.Default is the default mode of operation for Web API, and if you don’t explicitly
reset this value, this is how Web API will run. In practice, it means that if you are self-hosting, the error detail policy
will be treated as IncludeErrorDetailPolicy.LocalOnly. If you are web-hosting, it will behave the same, unless
you have an explicit <customErrors /> section definition in the web.config file. Then, depending on whether
<customErrors /> has the value of on or off, your IncludeErrorDetailPolicy will be treated as Always or Never.

It's quite important to remember that <customErrors /> will always take higher priority; this may save you some
headaches if you find out that the error detail policy is behaving differently than it should according to the value set in
HttpConfiguration.

IncludeErrorDetailPolicy.Never simply means that Web API will never surface any error details at all,
regardless of where the request originates (locally or remotely).

The Code

Since IncludeErrorDetailPolicy is an HttpConfiguration property, it automatically applies globally to all requests.
This is a very straightforward setup performed at your app startup.

httpConfiguration.IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Always;

This also means that if you wish to be able to modify its value on a per-request basis, simply walking up to the
configuration object and modifying it at runtime is not a solution. The reason is that the new, changed value will still
be global and will then be applied to all subsequent requests too.

To change the error detail level at runtime for a single request, you should instead set the IncludeErrorDetail
value of the RequestContext, which is available on each HttpRequestMessage.

By setting it to true, you can force Web API to operate in the IncludeErrorDetailPolicy.Always mode for the
lifetime of this given request, overriding any global settings. You can do that in the MessageHandler that will run at the
entry point to the pipeline, such as the one shown in Listing 5-39.

Listing 5-39. A Message Handler Modifying the Error Detail Policy at Runtime on a Per Request Basis

public class PolicySetterHandler : DelegatingHandler
{

protected override Task<HttpResponseMessage> SendAsync(
HttpRequestMessage request, CancellationToken cancellationToken)

if (SOME_CONDITION)
{

}

else

{
}

return base.SendAsync(request, cancellationToken);

request.GetRequestContext().IncludeErroxDetail = true;

request.GetRequestContext().IncludeExrroxDetail = false;

}

config.MessageHandlers.Add(new PolicySetterHandler());
The condition could be anything you wish to diversify the error detail policy by, such as a user role, whitelisted

IPs, and so on. Any exception you'd now throw yourself, or Web API would throw for you, will be returned to the client
with error details based on that condition.

160

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

5-11. Return HTML from ASP.NET Web API

Problem
You would like to serve HTML pages from ASP.NET Web APL

Solution
There are three possible solutions to this problem, and each of the option has relevant application scenarios:

e Create a static HTML page and serve it through IIS (if you are web hosting), through OWIN
static file middleware (if you are OWIN hosting), or as StringContent from a Web API
controller (any other case).

e Treat HTML (text/html) as any another media type and serve the data using an HTML
MediaTypeFormatter.

e Bypass content negotiation (which is discussed in Recipe 4-8) and serve the HTML response
directly as an HttpResponseMessage or through a custom IHttpActionResult.

How It Works

In the first option you are only dealing with static files, so the option would be best for you if your usage scenario is a
very simple one, such as serving some pre-generated documentation, readme files, and other documents that do not
need to be processed on the server side.

The second option was briefly mentioned in Recipe 4-2. WebApiContrib contains two formatters that can be
added to your Web API: WebApiContrib.Formatting.Html, for basic HTML and WebApiContrib.Formatting.Razor,
for supporting Razor views. With this solution you are able to treat text/html on equal terms with other media types
and be part of regular content negotiation. This can be extremely valuable, as it allows you to serve the same data
not only in all the formats that your Web API might normally support (JSON, XML) but also represented in a nicely
formatted HTML.

Finally, if you have some functionality and data that does not have a valid representation in formats other than
HTML, such as login forms or heavily dynamic pages, you can designate specific controllers to be “HTML-controllers”
and have them bypass any content negotiation. The best way to achieve that is to write a custom IHttpActionResult
that will support Razor.

The Code

Let’s look at code examples for these three solutions.

Static Files

When your API is running on IIS, it will automatically pick up any static HTML files, so there isn’t anything special you
need to do.

Things are more interesting with OWIN. Project Katana provides a very useful static files middleware component
which can be added to your OWIN pipeline: Microsoft.Owin.StaticFiles (it’s available on NuGet under that name
too). The following example shows this particular middleware registered alongside Web API (for more on OWIN
hosting Web API, see Recipe 2-2). The registration of this handler is shown in Listing 5-40.

161

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

Listing 5-40. Setting Up an OWIN Static Files Handler for a “web” Folder

public class Startup

{
public void Configuration(IAppBuilder appBuilder)
{
var staticFilesDir = Path.Combine(Path.GetDirectoryName(Assembly.GetExecutingAssembly().
Location), "web");
var config = new HttpConfiguration();
config.Routes.MapHttpRoute(
name: "DefaultApi”,
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional }
);
appBuilder.UseStaticFiles(staticFilesDir);
appBuilder.UseWebApi(config);
}
}

Alternatively, if you are hosting Web API using the built-in WCF-based Web API self-host engine, you can pick up
the file by hand and serve to the user as a simple StringContent or StreamContent (subclasses of HttpContent), as
shown in Listing 5-41. You can learn more about serving binary data and StreamContent from Recipe 4-10.

Listing 5-41. An ASP.NET Web API Controller Serving HTML as String Content

public class HtmlController : ApiController

{
public HttpResponseMessage Get(string filename)
{
var response = new HttpResponseMessage
{
Content = new StreamContent(File.Open(AppDomain.CurrentDomain.BaseDirectory + "/files/"
+ filename, FileMode.Open))
b
response.Content.Headers.ContentType = new MediaTypeHeaderValue("text/html");
return response;
}
}

The controller grabs the local file from the files directory and writes it as a Stream directly to the response
message. Alternatively, all the contents of the HTML file could have been read and StringContent used as the body of
the response instead. One thing to note here, since in self-host you used AppDomain.CurrentDomain.BaseDirectory
to determine the location on the disk, the location of your files folder will be relative to the DLL of the self-hosted
service. In this case, the assumption has been that the files in the files folder are configured as Copy Always and
Content in the Build actions for that file.

On more thing required here is the route that will provide the filename parameter.

config.Routes.MapHttpRoute("HTML", "files/{filename}", new { controller = "Html" });
You can now request static HTML pages from your self-hosted server accordingly.

GET /files/test.html

162

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

HTML via MediaTypeFormater

Once you install the WebApiContrib’s WebApiContrib.Formatting.Razor from NuGet, registering it in your Web API
boils down to a single line of code, which will allow HTML to be a fully-fledged member of the content negotiation
process.

config.Formatters.Add(new RazorViewFormatter());
The above registration uses the default settings, which can obviously be tweaked; the constructor takes the
following three configuration parameters:
e The root folder containing the view files; defaults to ~/Views
e Aninstance of IViewlLocator; defaults to RazorViewlLocator

e Aninstance of IViewParser; defaults to RazorViewParser

By modifying those you are able to change the logic used to determine which view should be used and how they
are processed (for example you can arbitrarily inject your custom layout to all views and so on).

The default view location mechanism will expect a view with the same name as the name of the return type from
an action. An example is shown in Listing 5-42.

Listing 5-42. A Regular ASP.NET Web API Action and a Corresponding Razor View for the tex/html Format

//action
public Item Get(int id)

{
}

//Item.cshtml
@model Apress.Recipes.WebApi.Controllers.Item
<!DOCTYPE html>

return new Item {Id = id, Name = "Filip"};

<html>
<head>
<meta name="viewport" content="width=device-width" />
<title>Item</title>
</head>
<body>
<h1>@Model.Id</h1>
<h2>@Model.Name</h2>
</body>
</html>

This also means that when you are returning collections, you would ideally wrap them in a view model, rather
than returning a list directly. This is shown in Listing 5-43.

163

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

Listing 5-43. Returing a Collection of Items with the HTML Formatter in Use

//view model
public class Items

{
public IEnumerable<Item> Collection { get; set; }
}
//action
public Items Get()
{
var list = new List<Item>
{
new Item {Id = 1, Name = "Filip"},
new Item {Id = 2, Name = "Not Filip"}
};
return new Items {Collection = list};
}
//Ttems.cshtml

@model Apress.Recipes.WebApi.Controllers.Items
<!DOCTYPE html>

<html>
<head>
<meta name="viewport" content="width=device-width" />
<title>Item¢/title>
</head>
<body>
@foreach (var item in Model.Collection)
{
<h1>@item.Id</h1>
<h2>@item.Name</h2>
}
</body>
</html>

In each case, the HTML representation is served to the client only when he requests a text/html, application/
xhtml, or application/xhtml+xml media type. In other circumstances, you still get the resource in a relevant content
negotiated format (i.e. JSON).

The formatter additionally allows you to locate views through a global map or attributes on the DTOs. Documen-
tation with examples can be found under https://github.com/WebApiContrib/WebApiContrib.Formatting.Razor

HTML via IHttpActionResult

Finally, if you want to bypass content negotiation, but you still want to use the full power of dynamic Razor-backed
HTML, you can easily create a custom IHttpActionResult to serve HTML content. To do that, you need to add
RazorEngine package from NuGet. The rest is quite simple: I discussed IHttpActionResult in Chapter 4. The
HtmlActionResult is shown in Listing 5-44

164

https://github.com/WebApiContrib/WebApiContrib.Formatting.Razor

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

Listing 5-44. An HTML Implementation of IHttpActionResult

public class HtmlActionResult : IHttpActionResult

{

private readonly string _view;
private readonly dynamic _model;

public HtmlActionResult(string viewName, dynamic model)
{

_view = LoadView(viewName);

_model = model;

}

public Task<HttpResponseMessage> ExecuteAsync(CancellationToken cancellationToken)
{
var response = new HttpResponseMessage(HttpStatusCode.OK);
var parsedView = RazorEngine.Razor.Parse(view, model);
response.Content = new StringContent(parsedView);
response.Content.Headers.ContentType = new MediaTypeHeaderValue("text/html");
return Task.FromResult(response);

}

private static string LoadView(string name)

{
var view = File.ReadAllText(Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "views",
name + ".cshtml"));
return view;

}

The code here loads the view from a predefined path, uses RazorEngine to parse it, and constructs an instance of

HttpResponseMessage using StringContent and the relevant text/html content type.

Now you can use the identical Items.cshtml view as before, and just modify the controller slightly, in a way

shown in Listing 5-45. Similarly as before, the template Razor file has to be configured as Copy Always and Content in
the Build Actions, otherwise it would not be copied to the output folder (AppDomain.CurrentDomain.BaseDirectory).

Listing 5-45. Modified Action Returning Items, This Time Through HtmlActionResult

public IHttpActionResult Get()

{

var list = new List<Item>

{

new Item {Id = 1, Name
new Item {Id = 2, Name

"Filip"},
"Not Filip"}

};

return new HtmlActionResult {"Items", new Items { Collection = list }};

165

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

5-12. Store Objects for the Duration of HTTP Request
Problem

You need to store some objects in a commonly accessible place for the duration of the HTTP request.

Solution
There are three primary ways of supporting per request storage in ASP.NET Web API.

e Ifyou are using a web host with an ASP.NET runtime available to you, you can always reach to
the traditional HttpContext.Current.Items dictionary. This is a not very elegant solution but
it’s often the simplest and quickest to implement.

e The second option is to use the Properties dictionary on the current HttpRequestMessage.
It's a generic store for all kinds of objects that’s disposed of together with the
HttpRequestMessage.

e Finally, ASP.NET Web API exposes an extension method called GetCorrelationId that gets an
ID of a given HttpRequestMessage. You can use that ID to store request-specific information in
some external storage.

How It Works

Since the current request is available in almost every single place in the ASP.NET Web API pipeline (controllers,
filters, message handlers, formatters), you will always be able to quite easily extract the information you stored in its
Properties, whichis a Dictionary<string, object>.

The Properties dictionary is initialized at the very beginning of the request lifetime with some basic contextual
information about that request. ASP.NET Web API itself uses this dictionary to store all kinds of interesting
information, such as a flag whether the request is local, information about the ExrorDetail policy (Recipe 5-10) for
the given request and even a reference to the relevant context of the underlying host (HttpContext, OwinContext, or
OWIN environment dictionary). This brings us back to the initial option of using HttpContext; to improve the testability
of your methods you can avoid calling HttpContext directly and try to extract it from the request’s Properties instead.

var httpContext = Request.Properties["MS HttpContext"] as HttpContextBase;
Similarly, you can access the I0winContext if you are hosting using Project Katana.

var owinContext = Request.Properties["MS OwinContext"] as IOwinContext;
var owinEnvironment = Request.Properties["MS_OwinEnvironment"] as IDictionary<string, object>;

ASP.NET Web API provides a number strongly typed keys through the HttpPropertyKeys class (Listing 5-46) to

access the information it stores there. The comments in the class come directly from the ASP.NET Web API source
code and provide a description of what a given key is used for.

166

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

Listing 5-46. Definition of HttpPropertyKeys

public static class HttpPropertyKeys

{

/// Provides a key for the HttpConfiguration associated with this ///request.
public static readonly string HttpConfigurationKey = "MS_HttpConfiguration”;

/// Provides a key for the IHttpRouteData associated with this request.
public static readonly string HttpRouteDataKey = "MS_HttpRouteData";

/// Provides a key for the HttpActionDescriptor associated with this ///request.
public static readonly string HttpActionDescriptorKey = "MS_HttpActionDescriptor";

/// Provides a key for the current SynchronizationContext stored in ///HttpRequestMessage.Properties
/// If SynchronizationContext.Current is null then no context is ///stored.
public static readonly string SynchronizationContextKey = "MS_SynchronizationContext";

/// Provides a key for the collection of resources that should be ///disposed when a request is disposed.
public static readonly string DisposableRequestResourcesKey = "MS_DisposableRequestResources";

/// Provides a key for the dependency scope for this request.
public static readonly string DependencyScope = "MS_DependencyScope";

/// Provides a key for the client certificate for this request.
public static readonly string ClientCertificatekey = "MS_ClientCertificate";

/// Provides a key for a delegate which can retrieve the client ///certificate for this request.
public static readonly string RetrieveClientCertificateDelegateKey = "MS_

RetrieveClientCertificateDelegate";

/// Provides a key for the HttpRequestContext for this request.
public static readonly string RequestContextKey = "MS RequestContext";

/// Provides a key for the Guid stored in ///HttpRequestMessage.Properties.
/// This is the correlation id for that request.

/// </summary>

public static readonly string RequestCorrelationKey = "MS _RequestId";

/// Provides a key that indicates whether the request originates from a ///local address.
public static readonly string IslLocalKey = "MS Islocal";

/// Provides a key that indicates whether the request failed to match a ///route.
public static readonly string NoRouteMatched = "MS_NoRouteMatched";

/// Provides a key that indicates whether error details are to be ///included in the response
for this HTTP request.
public static readonly string IncludeErrorDetailKey = "MS IncludeErrorDetail";

/// Provides a key for the parsed query string stored in ///HttpRequestMessage.Properties.
public static readonly string RequestQueryNameValuePairsKey = "MS_QueryNameValuePairs";

/// Provides a key that indicates whether the request is a batch ///request.
public static readonly string IsBatchRequest = "MS_BatchRequest";

167

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION

At this point you will probably not be surprised to learn that the GetCorrelationId extension method mentioned
before, actually also uses the Properties dictionary to store the ID of the request (RequestCorrelationKey). The
source code for that method is shown in Listing 5-47 and as you can see, it tries to extract the request-specific Guid
from the Properties. If it’s not found, it will be created, persisted in the dictionary, and returned so that the next time
you reach for it, it will already be available.

Listing 5-47. Definition of GetCorrelationld Method

public static Guid GetCorrelationId(this HttpRequestMessage request)

{
if (request == null)

{
}

throw Error.ArgumentNull("request");

Guid correlationld;
if (!request.Properties.TryGetValue<Guid>(HttpPropertyKeys.RequestCorrelationKey, out
correlationId))

{

correlationld = Trace.CorrelationManager.Activityld;
if (correlationId == Guid.Empty)

{

correlationId = Guid.NewGuid();

}

request.Properties.Add(HttpPropertyKeys.RequestCorrelationKey, correlationId);

}

return correlationld;

The Code

Listing 5-48 introduces two generic helper methods that allow you to add and retrieve objects to the current
HttpRequestMessage in an easy way from any place in your Web API pipeline. It uses the underlying Properties
dictionary as the storage.

Listing 5-48. Extensions to Work with HttpRequestMessage Properties

public static class HttpRequestMessageExtensions

{
public static void Add(this HttpRequestMessage request, string key, object o)

{
}

request.Properties[key] = o;

168

CHAPTER 5 CONFIGURATION AND CUSTOMIZATION

public static T Get<T>(this HttpRequestMessage request, string key)

{
object result;
if (request.Properties.TryGetValue(key, out result))
{
if (result is T)
return (T) result;
}
try
{
return (T)Convert.ChangeType(result, typeof (T));
}
catch (InvalidCastException) {}
}
return default(T);
}

Next, let’s look at an example of working with the correlation ID. Listing 5-49 shows a sample global storage.
The implementation details are not important; it might just as well be cache, document database, traditional
database, or anything else.

Listing 5-49. A Sample Globally-Accessible Storage Container

public static class Global

{
static Global()
{
Storage = new ConcurrentDictionary<string, object>();
}
public static ConcurrentDictionary<string, object> Storage { get; set; }
}

You can now create a message handler wrapping your entire ASP.NET Web API processing pipeline (remember
that message handlers are executed first and last in the pipeline) like the one shown in Listing 5-50.

Listing 5-50. A Demo Handler Injecting the Correlation ID and the HttpRequestMessage into a Global Container for
Later Use

public class CorrelationHandler : DelegatingHandler

{

protected async override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
CancellationToken cancellationToken)

{

var reqld = request.GetCorrelationId().ToString();
if (Global.Storage.TryAdd(reqld, request))
{

169

CHAPTER 5 © CONFIGURATION AND CUSTOMIZATION
var result = await base.SendAsync(request, cancellationToken);

object req;
Global.Storage.TryRemove(reqld, out req);
return result;

}

return await base.SendAsync(request, cancellationToken);

The handler grabs a correlation ID of a request and puts the entire HttpRequestMessage as a reference in the
global dictionary you previously created. Now, if you want to reach into the current request from some of your
services, you can do so through that ID.

Granted, you will still need to pass around that ID, but that’s much easier than passing around the entire
HttpRequestMessage. To avoid memory leak, the request is removed from the storage at the end of the pipeline.

170

CHAPTER 6

Embrace HTTP with ASP.NET Web API

This chapter discusses some of the HTTP concepts that have traditionally been neglected or were difficult to work
with in ASP.NET, but are now easy to implement with ASP.NET Web API. By taking advantage of some of them you can
immediately benefit by having a more flexible, client-friendly, and maintainable application.

You will learn how to do the following:

e Work with HttpRequestMessage (Recipe 6-1)

e Support partial GET requests (Recipe 6-2)

e Supportless common HTTP verbs such as HEAD and PATCH (Recipes 6-3 and 6-4)
e Introduce HTTP batching (Recipe 6-5)

e Enable automatic 406 response from content negotiation (Recipe 6-6)

e Implement API versioning (Recipes 6-7 and 6-8)

e Use custom HttpContent (Recipe 6-9)

6-1. Work Directly with HttpRequestMessage
Problem

You would like to work directly with HttpRequestMessage in your actions.

Solution

The current HttpRequestMessage is always available as a public Request property on the base controller
(ApiController), and it can always be accessed through it.

public HttpResponseMessage Post()
{

}

//access Request here

Alternatively, instead of using custom models as action parameters, with the intent of the Web API pipeline
binding them for you, you can use the raw HttpRequestMessage.

171

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

public HttpResponseMessage Post(HttpRequestMessage request)

{
}

//access request here

Some might argue the latter approach is visually more compelling as the action is explicit about its dependencies,
rather than relying on a hidden property.

How It Works

The Web API pipeline, specifically HttpControllerDispatcher, is responsible for creating an HttpControllerContext
for a controller selected to handle the incoming HTTP request. That object contains a public property called Request,
which in turn is surfaced by ApiController (see Listing 6-1).

The setter on the Request property actually internally performs a bunch of initialization work, which allows you

to easily use that in your unit tests, in case your action uses the HttpRequestMessage directly.

Listing 6-1. Definition of the Request Property on ApiController

public HttpRequestMessage Request

{

172

get

return ControllerContext.Request;

if (value == null)
{

}

throw Error.PropertyNull();
HttpRequestContext contextOnRequest = value.GetRequestContext();
HttpRequestContext contextOnController = RequestContext;

if (contextOnRequest != null && contextOnRequest != contextOnController)
{

}

throw new InvalidOperationException(SRResources.RequestContextConflict);
ControllerContext.Request = value;
value.SetRequestContext(contextOnController);

RequestBackedHttpRequestContext requestBackedContext =
contextOnController as RequestBackedHttpRequestContext;

if (requestBackedContext != null)

requestBackedContext.Request = value;

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

On the other hand, if you were to use an HttpRequestMessage as a parameter for your action, the default
IActionValueBinder would select HttpRequestParameterBinding to handle the binding.

Not surprisingly, the end result would be the same as accessing Request directly off ApiController because
HttpRequestParameterBinding also uses HttpControllerContext to hydrate your action's argument (as shown in
Listing 6-2).

Listing 6-2. Definition of HttpRequestParameterBinding

public class HttpRequestParameterBinding : HttpParameterBinding

{
public HttpRequestParameterBinding(HttpParameterDescriptor descriptor)
: base(descriptor)
{
}
public override Task ExecuteBindingAsync(ModelMetadataProvider metadataProvider,
HttpActionContext actionContext, CancellationToken cancellationToken)
{
string name = Descriptor.ParameterName;
HttpRequestMessage request = actionContext.ControllerContext.Request;
actionContext.ActionArguments.Add(name, request);
return TaskHelpers.Completed();
}
}
The Code

The example in Listing 6-3 shows both approaches to dealing with HttpRequestMessage. In each case, you can easily
access all the context and header information, as well as read and process the body of the request. Notice that your
actions can also combine the regular URI parameter binding with HttpRequestMessage binding.

Listing 6-3. A Sample Controller Working with HttpRequestMessage in Different Ways

public class TestController : ApiController

{
[Route("test/{id:int}")]
public string Get(int id, HttpRequestMessage req)
{

}

[Route("test/{text:alpha}")]
public string Get(string text)

{
}

return id + + req.RequestUri;

return text + + Request.RequestUri;

173

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

[Route("testA")]
public async Task<TestItem> Post(HttpRequestMessage req)

{
}

[Route("testB")]
public async Task<TestItem> Post()

{
}

return await req.Content.ReadAsAsync<TestItem>();

return await Request.Content.ReadAsAsync<TestItem>();

HTTPREQUESTMESSAGE

HttpRequestMessage, as part of the new HTTP object model in .NET (System.Net.Http), provides a very rich,
strongly typed abstraction over HTTP. This helps you enforce compile-time checks on different HTTP-bound
operations such as parsing specific header types.

public class HttpRequestMessage : IDisposable

{
public HttpRequestMessage(HttpMethod method, String requestUri);
public HttpRequestMessage(HttpMethod method, Uri requestUri);
public HttpRequestMessage();

public HttpContent Content { get; set; }

public HttpRequestHeaders Headers { get; }

public HttpMethod Method { get; set; }

public IDictionary<String,Object> Properties { get; }
public Uri RequestUri { get; set; }

public Version Version { get; set; }

protected virtual void Dispose(Boolean disposing);

public override String ToString();
public void Dispose();

You can read more about HttpRequestMessage at MSDN http://msdn.microsoft.com/en-us/library/
system.net.http.httprequestmessage(v=vs.110).aspx.

174

http://msdn.microsoft.com/en-us/library/system.net.http.httprequestmessage(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.net.http.httprequestmessage(v=vs.110).aspx

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

6-2. Support Partial GET
Problem

You'd like to support partial GET in your API, using the combination of Range, Accept-Ranges, and Content-Range
headers.

Solution

System.Net.Http makes it quite easy to handle range requests, as all of the headers are strongly typed. To support
partial GETs, you will need to manually inspect the Range header in your action, and respond accordingly—either
with the entire resource or a subset of it.

public HttpResponseMessage Get()

{
var rangeHeader = Request.Headers.Range;
//process rangeHeader

}

How It Works

The idea behind range requests is that the client can request a subset of a resource, rather than an entire resource.

On the request side, the RangeHeaderValue contains the Unit relevant for the given resource and a collection of
RangeItemHeaderValues, each of which wraps the From and To values that the client wishes to retrieve from the APL
The definitions of those can be seen in Listing 6-4.

Listing 6-4. RangeHeaderValue and RangeltemHeaderValue Definitons

public class RangeHeaderValue : ICloneable

{
public RangeHeaderValue();
public RangeHeaderValue(long? from, long? to);
public ICollection<RangeItemHeaderValue> Ranges { get; }
public string Unit { get; set; }
public static RangeHeaderValue Parse(string input);
public static bool TryParse(string input, out RangeHeaderValue parsedValue);
}
public class RangeItemHeaderValue : ICloneable
{
public RangeItemHeaderValue(long? from, long? to);
public long? From { get; }
public long? To { get; }
}

On the response side, ContentRangeHeaderValue wraps all of that information in a single header (Listing 6-5).

175

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Listing 6-5. ContentRangeHeaderValue Definiton

public class ContentRangeHeaderValue : ICloneable

{
public ContentRangeHeaderValue(long length);
public ContentRangeHeaderValue(long from, long to);
public ContentRangeHeaderValue(long from, long to, long length);
public bool HasLength { get; }
public bool HasRange { get; }
public long? Length { get; }
public long? To { get; }
public string Unit { get; set; }
public static ContentRangeHeaderValue Parse(string input);
public static bool TryParse(string input, out ContentRangeHeaderValue parsedValue);
}

The request for partial content should contain an Accept-Range header, indicating at least start position or end
position. In the HTTP specification, bytes were chosen as the default unit; however, custom units can be used too.
As aresult, you can use partial GETs as a viable alternative for paging and query string/route-based parameters, an
example of which can be seen in Listing 6-6.

Listing 6-6. Sample GET Request for a Specific Range

GET http://localhost:9000/items HTTP/1.1
Accept: application/json
Range: Item=2-4

If the request is fulfilled as a partial one, the returned HttpResponseMessage should contain a status code of
206 (HttpStatusCode.PartialContent). Additionally, the Content-Range header should be set on the response,
informing the client what range is being returned and the total length of the resource. A sample partial response is
shown in Listing 6-7.

Listing 6-7. Sample 206 Response with a Specific Range

206 Partial Content

Accept-Ranges: Item

Date: Tue, 04 Mar 2014 19:23:55 GMT

Server: Microsoft-HTTPAPI/2.0

Content-Length: 74

Content-Range: Item 2-4/4

Content-Type: application/json; charset=utf-8
[{"Id":2,"Text":"World"},{"Id":3,"Text": "Goodbye"},{"Id":4,"Text": "Hell"}]

The Code

The controller shown in Listing 6-8 contains a basic example of a Web API endpoint exposing a collection of
resources. Let’s modify this sample to support partial GETs.

176

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Listing 6-8. Sample GET Controller

public class ItemController : ApiController

{
private static List<Item> _items = new List<Item>
{
new Item {Id = 1, Text = "Hello"},
new Item {Id = 2, Text = "World"},
new Item {Id = 3, Text = "Goodbye"},
new Item {Id = 4, Text = "Hell"}
b
[Route("items")]
public HttpResponseMessage Get()
{
var response = Request.CreateResponse(HttpStatusCode.OK, _items);
return response;
}
}

Since the resource in question is a collection, you can introduce a custom range Unit representing an individual
element of that collection. In this particular example, that would be an Item entity, so it could be called “Item” too
(recall that the “x-" prefix is deprecated). The partial GET support can be easily used here to navigate back and forth
between the collection's members, in a typical pagination manner.

To achieve that, you have to look at a few things:

e The Range header has to be present.

e The Unit contained in that Range header has to be equal to the custom unit supported by the
HTTP endpoint.

e The Range definition inside the Range header has to make sense. In other words, it can’t be out
of bounds of the collection size at both the start and end, and at least one of the values (From
or To) has to be provided by the client.

With this knowledge, you can go ahead and modify the original action with specific behavior that will be
processed if all of the above conditions are satisfied (Listing 6-9). You can use the Range header information to
determine the LINQ Skip and Take parameters for the original collection and to construct a 206 Partial Content
response based on that. Additionally, this filtering information should be added to the Content-Range header of the
response, along with the overall collection length.

Listing 6-9. Extending the Original GET Action with PartialContent Support

public HttpResponseMessage Get()
{
var rangeHeader = Request.Headers.Range;
if (rangeHeader != null 8& rangeHeader.Unit == "Item" && rangeHeader.Ranges != null)
{
var rangeValue = rangeHeader.Ranges.FirstOrDefault();
if (rangeValue != null)

if ((!rangeValue.From.HasValue & !rangeValue.To.HasValue) ||

rangeValue.From > _items.Count || rangeValue.To > _items.Count)
throw new HttpResponseException(HttpStatusCode.BadRequest);

177

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

var skip = (rangeValue.From ?? 0);
var take = (rangeValue.To ?? _items.Count) - rangeValue.From + 1;

var partialRes = Request.CreateResponse(HttpStatusCode.PartialContent,
_items.Skip((int) skip - 1).Take((int) take));

partialRes.Headers.AcceptRanges.Add("Item");

partialRes.Content.Headers.ContentRange = new ContentRangeHeaderValue(skip,
rangeValue.To 2?? _items.Count, _items.Count) {Unit = "Item"};

return partialRes;

}

var response = Request.CreateResponse(HttpStatusCode.OK, items);
response.Headers.AcceptRanges.Add("Item");
return response;

Finally, notice how in both cases (full response and partial response) you should add the Accept-Ranges header
entry to the response. This is a hint to the client what Unit you are expecting.

SUPPORTING PARTIAL GET WITH BYTES

If you would like the client to be able to specify which bytes of your resource he should get, Web API offers

a custom HttpContent that is of great help: ByteRangeStreamContent. Its constructor takes in a Stream
representing the object you'd like to return from the APl and a raw RangeHeaderValue. Internally, it will figure out
which bytes exactly should be part of the response, and the necessary Content headers will also be set for you.

var partialResponse = Request.CreateResponse(HttpStatusCode.PartialContent);
partialResponse.Content = new ByteRangeStreamContent(stream, Request.Headers.Range,
"application/json");

return partialResponse;

For more information on custom HttpContent, see Recipe 6-9.

6-3. Support the HEAD Verb
Problem

You would like to add support for the HEAD verb in your Web API service. HEAD requests are often used to determine
the size of the resource prior to requesting it (i.e. to provide a loading progress) or to simply ping an HTTP endpoint.

Solution

ASP.NET Web API provides AcceptVerbsAttribute, which you can use to annotate an action as supporting HTTP
verbs other than those inferred from the Web API convention.

However, support for the HEAD verb is inconsistent across different Web API hosts, so the safest solution is to roll
out a custom MessageHandler-based solution, which will convert each HEAD request into a GET, let it execute as a
regular GET, and strip away the body of the response as it leaves your Web API.

178

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

STRONGLY TYPED HTTP VERB ATTRIBUTES

Aside from AcceptVerbsAttribute, which lets you pass in HTTP verbs as strings, ASP.NET Web API also provides
strongly typed attributes for the core HTTP methods:

e HttpGetAttribute

e HttpPostAttribute

e HttpPutAttribute

e HttpDeleteAttribute
e HttpHeadAttribute

e HttpPatchAttribute

e HttpOptionsAttribute

However, from a functionality perspective, there is no difference between them; both AcceptVerbsAttribute and
the dedicated method attributes implement IActionHttpMethodProvider, which is used to hint to the ASPNET
Web API pipeline which HTTP verb an action should respond to.

How It Works

The HEAD verb is defined in RFC 2616, section 9.4, which states the following:

The HEAD method is identical to GET except that the server MUST NOT return a message-body in
the response. The metainformation contained in the HTTP headers in response to a HEAD request
SHOULD be identical to the information sent in response to a GET request. This method can be
used for obtaining metainformation about the entity implied by the request without transferring
the entity-body itself.

Hypertext Transfer Protocol -- HTTP/1.1
RFC 2616 Fielding, et al.

In other words, the behavior of HEAD is supposed to be exactly like GET but without returning the response

body. All the other headers should be present, including the Content-Length header.

You could normally expect to force ASP.NET Web API to support HEAD using the following setup:

public class TestController : ApiController

{

[Route("test")]
[AcceptVerbs("GET","HEAD")]
public string Get()

{
}

return "Hello";

179

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Unfortunately, as mentioned before, support for HEAD in ASP.NET Web API is, at the time of writing (ASP.NET
Web API 2.1), rather spotty, and this is how the above controller would behave under different hosts:

e Web host: HEAD will work correctly.

e Self-host: HEAD request will be responded to with a 200 status code but Content-Length will
always be 0.

e Own host (project Katana): HEAD will not work, and no response from server will be returned.

So unless you are exclusively on a web host, a simple and reliable solution is to rely on the ASP.NET Web API
MessageHandler pipeline. Message handlers form a so-called "Russian doll" pipeline in Web AP], as they execute one
after another as the request flows into the system, and in the opposite order as the response is sent out the system.

This processing pipeline is very powerful, as its design allows you to register any number of handlers, responsible
for addressing all kinds of cross-cutting concerns, such as authentication or logging. Using the same methodology, in
this particular recipe, you will be able to intercept a HEAD request on its way into your API, swap the HTTP verb on
the request with a GET, and let it execute as if it were a regular GET. As the response is sent out, the handler will have a
chance to process it, and that's when it can remove the body from the response to conform to the standards defined in
REFC 2616.

As the base class to be used for Web API message handlers, DelegatingHandler exposes a single method to
override and call (Listing 6-10).

Listing 6-10. Definition of the DelegatingHandler

public abstract class DelegatingHandler : HttpMessageHandler

{
public HttpMessageHandler InnerHandler { get; set; }
protected internal override Task<HttpResponseMessage> SendAsync(
HttpRequestMessage request,
CancellationToken cancellationToken
)
}

When a handler wants to hand off the incoming request to the next member of the processing pipeline—which
it normally should, unless it wants to break the pipeline and respond to the client immediately—it should call
the base.SendAsync method. By awaiting the output of this call to base, it's also able to get a hold of the outgoing
HttpResponseMessage and process that.

The Code

The message handler shown in Listing 6-11 provides the core functionality discussed in this recipe. The highlighted
bit of code is where the response is being grabbed on its way from the Web API.

Listing 6-11. Handler Responsible for Adding Support for the HEAD Verb

public class HeadHandler : DelegatingHandler
{

protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, System.
Threading.CancellationToken cancellationToken)

{

180

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

if (request.Method == HttpMethod.Head)

request.Method = HttpMethod.Get;
request.Properties.Add("HeadMarker", true);

}
var response = await base.SendAsync(request, cancellationToken);

object isHead;
response.RequestMessage.Properties.TryGetValue("HeadMarker", out isHead);

if (response.IsSuccessStatusCode && isHead != null 8& ((bool)isHead))
var oldContent = await response.Content.ReadAsByteArrayAsync();
var content = new StringContent(string.Empty);

content.Headers.Clear();

foreach (var header in response.Content.Headers)

{
}

content.Headers.Add(header.Key, header.Value);

content.Headers.ContentlLength = oldContent.Length;
response.Content = content;

}

return response;

In case of a successful response, the content of the response is swapped with an empty StringContent.
Additionally, all content headers are copied over and the Content-Length header of the new response content is set to
be equal to the original one. If IsSuccessStatusCode returns false, it means that the server returned one of the 4xx or
5xx codes, and at that point you should not purge the body of the response.

You can now register the message handler against the MessageHandlers collection of your HttpConfiguration
object. The order in which they are registered is important; in the spirit of the “Russian doll” model, the first message
handler will process the request first and the response last, and so on.

var config = new HttpConfiguration();
config.MessageHandlers.Add(new HeadHandler());

With this in place, there is no need for any additional attribute decoration at action level.

Tip Because HEAD requests execute as normal GET requests, it's common to combine such actions with some sort
of server-side caching to avoid incurring performance penalties.

181

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

6-4. Support the PATCH Verb
Problem
You would like to support partial updates in your ASP.NET Web API application using the PATCH HTTP verb.

Solution

PATCH is supported by ASP.NET Web API out of the box using verb-based dispatching. As a result, it's enough to add
a Patch method or any other method decorated with an [HttpPatch] or [AcceptVerbs("PATCH")] attribute, and you
will have Web API correctly route the client's request there.

However, since PATCH is responsible for partial updates of your resources, it's interesting to dissect how this
process may be performed. There are three primary ways:

e Manual updates

e Usethe Delta<T>, which is part of the Microsoft.AspNet.WebApi.OData (OData Version 3.0)
or Microsoft.AspNet.OData (OData Version 4.0) package

e Roll out a custom reflection-based solution

How It Works

PATCH is defined in RFC 5789. It allows your client to perform partial updates on an HTTP resource.

The PATCH method requests that a set of changes described in the request entity be applied to the
resource identified by the Request-URI. The set of changes is represented in a format called a “patch
document” identified by a media type.

Internet Engineering Task Force (IETF)
Request for Comments: 5789

It’s also semantically different to PUT, which is intended to update the whole entity. Again, this is clearly stated in
RFC 5789.

The PUT method is already defined to overwrite a resource with a complete new body, and cannot
be reused to do partial changes. Otherwise, proxies and caches, and even clients and servers, may
get confused as to the result of the operation.

Internet Engineering Task Force (IETF)
Request for Comments: 5789

The Microsoft.AspNet.WebApi.OData and Microsoft.AspNet.0OData NuGet packages introduce Delta<T»,
a dynamic proxy object that can wrap any of your models. While it was developed for and intended to be used
with OData only (and ODataMediaTypeFormatter), it can also be used with JsonMediaTypeFormatter (not
XmlMediaTypeFormatter, though). Delta<T> uses dynamically compiled expressions trees to provide property getters
and setters, and correctly update the properties of your model (represented by the T).

Supporting PATCH through reflection boils down to creating a custom helper that will iterate through all the
properties of the model and try to update them according to the client’s request. There are certainly many ways to
approach this; one approach is shown in the next section.

182

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

The Code

Let's go through all of the potential options for supporting PATCH in your APIs. The controller used in all of the examples
in this recipe will look like the one shown in Listing 6-12. For simplicity, a static list will be used as a data source..

Listing 6-12. Sample Controller Supporting PATCH

public class ItemController : ApiController

{
private static readonly List<Item> _items = new List<Item>
{
new Item {Id = 1, Name = "Filip", Country = "Switzerland"},
new Item {Id = 2, Name = "Felix", Country = "Canada"},
new Item {Id = 3, Name = "Michal", Country = "Poland"}
};
public Item Patch(int id, Item newItem)
{
//different for each approach
}
}

Manual Updates

This method is the one used most often because it’s the easiest to implement. You need to create a Patch action
accepting your model and simply update all of the properties of the target resource by hand, as shown in Listing 6-13.

Listing 6-13. Traditional, Manual Way of Supporting PATCH

[Route("traditional/{id:int}")]
public Item Patch(int id, Item newItem)
{
var item = items.FirstOrDefault(x => x.Id == id);
if (item == null) throw new HttpResponseException(HttpStatusCode.NotFound);

if (newItem.Name != null)
item.Name = newItem.Name;

if (newItem.Country != null)
item.Country = newItem.Country;
return item;

Of course, this approach has a number of issues. For example, the client might submit only a handful of
properties of the model, leaving the rest of them null. Therefore, ideally, you should only use the non-null ones to
update the target resource. On the other hand, this poses a challenge if you want to allow the client to nullify some
of the properties. Moreover, such an approach forces your model to use only reference types as properties (all value
types should become nullable).

183

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Using Delta<T>

Listing 6-14 shows Delta<T> in use. You will need to tweak your PATCH method to take Delta<T> as an input instead of
just using your model. Then, to perform a patch update over an existing resource, you call the PATCH method exposed
by the Delta<T> proxy and pass in an instance of that object that should be updated. In this example, you have no DB
to persist in, but you should then proceed to save the original object in the DB, as its state has been modified to reflect
the updates requested by the client.

Listing 6-14. Using Delta<T> in a Patch Action

[Route("delta/{id:int}")]
public Item Patch(int id, Delta<Items> newItem)

{
var item = items.FirstOrDefault(x => x.Id == id);
if (item == null) throw new HttpResponseException(HttpStatusCode.NotFound);
newItem.Patch(item);
//item instance is now updated
return item;
}

Usage from the client side is very simple; you just use the original model to send the HTTP request. The example,
utilizing HttpClient, is shown in Listing 6-15.

Listing 6-15. PATCH Request Using Delta<T>

var item = new Item()

{

Id = 1,

Country = "Scotland"
};

var client = new HttpClient();

var msg = new HttpRequestMessage(new HttpMethod("PATCH"), address + "delta/1")
{

Content = new ObjectContent(typeof (Item), item, new JsonMediaTypeFormatter())
};

var response = await client.SendAsync(msg);

Using Reflection

As mentioned already, there are a number of approaches that could be taken to support reflection-based PATCH.
Listing 6-16 shows one way of doing it. You will need to change the Patch action to take in an
IEnumerable<KeyValuePair<string, object>> instead of your model.

Listing 6-16. Using a Reflection-based Solution in a Patch Action

[Route("custom/{id:int}")]
public Item Patch(int id, IEnumerable<KeyValuePair<string, object»»>updateProperties)

{

var item = items.FirstOrDefault(x => x.Id == id);
if (item == null) throw new HttpResponseException(HttpStatusCode.NotFound);

184

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

foreach (var property in updateProperties)

{
}

//update all properties with reflection

return item;

You are forcing the client to submit a list of KeyValuePairs representing a property to be updated and a new

value to be set. To facilitate that, let's build a helper class (Listing 6-17) that will take in an instance of a model, a
property by name, and a new value, and will be able to use reflection to update the model correctly.

Listing 6-17. A Helper Class Using Reflection to Update the Relevant Property on the Model

public static class Updater

{

public static void Patch<T>(T obj, string propertyName, object value)

{
if (value is Int64)
value = Convert.ToInt32(value);
var propertyInfo = obj.GetType().GetProperty(propertyName, BindingFlags.IgnoreCase |
BindingFlags.Public | BindingFlags.Instance);
if (propertyInfo == null)
throw new ArgumentException("Property cannot be updated.");
if (!propertyInfo.CanRead || (typeof(IEnumerable).IsAssignableFrom(propertyInfo.
PropertyType) && propertyInfo.PropertyType != typeof(string)))
throw new ArgumentException("Property cannot be updated.");
SetValue(obj, value, propertyInfo);
}

private static void SetValue(object o, object value, PropertyInfo propertyInfo)
{ if (propertyInfo.PropertyType.IsEnum)
propertyInfo.SetValue(o, Convert.ToInt32(value));
else if (propertyInfo.PropertyType.IsNumericType())
propertyInfo.SetValue(o, Convert.ChangeType(value, propertyInfo.PropertyType));
else if (propertyInfo.PropertyType == typeof(Guid) || propertyInfo.PropertyType == typeof(Guid?))
{ Guid g;

if (Guid.TryParse((string)value, out g))

{
propertyInfo.SetValue(o, g);

185

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

else
{
throw new InvalidOperationException("Cannot use non Guid value on a Guid property!");
}
}
else
{
propertyInfo.SetValue(o, value);
}

The highlighted bits of code show different potential paths for setting the new property value. This is a simple
example. Depending on the types of properties on your model, you will hit a fair share of edge cases and will have to
handle all kinds of errors, but the gist is very clear.

You may now update the controller’s action to use the Updater helper class.

foreach (var property in updateProperties)

{
}

Updater.Patch(item, property.Key, property.Value);

The client can now use this PATCH endpoint to easily update the resources in your API. Listing 6-18 shows a
sample request made from HttpClient.

Listing 6-18. Sample Request to a Reflection-Based Patch Action

var postData = new List<KeyValuePair<string, object>>

{

new KeyValuePair<string, object>("Country", "Finland"),
new KeyValuePair<string, object >("Name", "Sami")
};
var msgTwo = new HttpRequestMessage(new HttpMethod("PATCH"), address + "custom/2")

{
Content = new ObjectContent(typeof(IEnumerable<KeyValuePair<string,object>>), postData, new

JsonMediaTypeFormatter())
};

var responseTwo = await client.SendAsync(msgTwo);

6-5. Support Batching of HTTP Requests
Problem

You would like to save on the number of HTTP requests between your client and the server, and are looking for a
mechanism allowing you to batch the HTTP calls to your Web API service.

Solution

To facilitate batching, you need to declare a dedicated batching route that will be the entry point for the client to call.
From there, each of the batched requests will be dispatched throughout your Web API pipeline as if it was a regular
incoming HttpRequestMessage.

186

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

To dedicate a route as a batch entry route, you have to use a MapHttpBatchRoute extension method.

config.Routes.MapHttpBatchRoute("WebApiBatch", "api/batch",
new DefaultHttpBatchHandler(new HttpServer(config, new HttpRoutingDispatcher(config))));

You can now post batch messages to your Web API using the multipart request format shown in Listing 6-19.

Listing 6-19. Sample Batching HTTP Request

POST http://localhost:9000//api/batch' HTTP 1.1
Content-Type: multipart/mixed; boundary="44503acf-0fe0-40ab-90ca-c431e69c72de"

--44503acf-0fe0-40ab-90ca-c431e69c72de
Content-Type: application/http; msgtype=request

POST /api/items HTTP 1.1
Content-Type: application /json; charset=utf-8
{"Id": 1, "Name":"Filip", "Country": "Switzerland"}

--44503acf-0fe0-40ab-90ca-c431e69c72de
Content-Type: application/http; msgtype=request

POST /api/items HTTP 1.1
Content-Type: application /json; charset=utf-8
{"Id": 2, "Name":"Felix", "Country": "Canada"}

--44503acf-0fe0-40ab-90ca-c431e69c72de
Content-Type: application/http; msgtype=request

GET /api/items HTTP 1.1
Accept: application /json
--44503acf-0fe0-40ab-90ca-c431e69c72de

In Listing 6-19, the request creates two resources and then retrieves a list of them, all in one HTTP trip.

How It Works

ASP.NET Web API supports request batching since version 2.1 of the framework. The batch itself is just a
multipart/mixed HTTP request, except each individual part's content type is set to be application/http;
msgtype=request media type. Conversely, the response is also multipart, and each part of the response is
application/http; msgtype=response.

When mapping the batch route, Web API creates a route with a dedicated per-route message handler attached
to it (see Chapter 3 for more details on route specific handlers). In the batching case, the handler is derived
from the abstract HttpBatchHandler; Web API uses different implementations for regular Web API endpoints
(DefaultHttpBatchHandler) and for OData ones (DefaultODataBatchHandler). You can also provide your own
custom implementation in the case that you want to customize some of the default behaviors.

The handler will extract all requests from the multipart request and dispatch them in process through the Web
API pipeline sequentially. It also composes a list of HttpResponseMessages, which—once everything is processed—
will be converted to a multipart response and sent back to client. The principle of in-process request dispatching is
the same as Web API's in-memory hosting, which is described in detail in Recipe 11-7.

187

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

If you don’t care about execution order, you can speed things up by setting a NonSequential flag on the
DefaultHttpBatchHandler.

config.Routes.MapHttpBatchRoute("WebApiBatch", "api/batch",
new DefaultHttpBatchHandler(new HttpServer(config, new
HttpRoutingDispatcher(config))) { ExecutionOrder = BatchExecutionOrder.NonSequential });

The Code

The batching support is easily enabled with the route registration:

config.Routes.MapHttpBatchRoute("WebApiBatch", "api/batch",
new DefaultHttpBatchHandler(new HttpServer(config, new HttpRoutingDispatcher(config))));

With that in place all you need to do is adhere to the standards of sending a mixed/multipart request. Listing 6-20
shows a sample done using HttpClient.

Listing 6-20. A Sample Request from a .NET HttpClient to a Batching Web API Endpoint

var client = new HttpClient();
var batchContent = new MultipartContent("mixed")

{
new HttpMessageContent(new HttpRequestMessage(HttpMethod.Post, address + "/api/items")
{
Content = new ObjectContent(typeof (Item),
new Item {Country = "Switzerland", Id = 1, Name = "Filip"},
new JsonMediaTypeFormatter())
D>
new HttpMessageContent(new HttpRequestMessage(HttpMethod.Post, address + "/api/items")
{
Content =
new ObjectContent(typeof (Item), new Item {Country = "Canada", Id = 2, Name = "Felix"},
new JsonMediaTypeFormatter())
1>
new HttpMessageContent(new HttpRequestMessage(HttpMethod.Get, address + "/api/items"))
};

var batchRequest = new HttpRequestMessage(HttpMethod.Post, address + "/api/batch")
{

};

Content = batchContent

var batchResponse = await client.SendAsync(batchRequest);
var provider = await batchResponse.Content.ReadAsMultipartAsync();
foreach (var content in provider.Contents)
{
var response = await content.ReadAsHttpResponseMessageAsync();
//process response

188

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Anew MultipartContent is constructed and then populated with individual HttpMessageContent instances
representing separate HttpRequestMessages that will be dispatched into the Web API. If you take this request and
send it to the server, it will produce the response shown in Listing 6-21.

Listing 6-21. Sample Response from a Batch-Friendly Endpoint

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary="1e075dc8-aea8-48b0-9df9-12e8a961016a"
Content-Length: 536

--1e075dc8-aea8-48b0-9df9-12e8a961016a
Content-Type: application/http; msgtype=response
HTTP/1.1 204 No Content

--1e075dc8-aea8-48b0-9df9-12e8a961016a
Content-Type: application/http; msgtype=response
HTTP/1.1 204 No Content

--1e075dc8-aea8-48b0-9df9-12e8a961016a
Content-Type: application/http; msgtype=response
HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8
[{"Id": 1, "Name":"Filip", "Country": "Switzerland"}, {"Id": 2, "Name":"Felix", "Country":
"Canada"}]

--1e075dc8-aea8-48b0-9df9-12e8a961016a

6-6. Automatic HTTP 406/Not Acceptable Server Responses
Problem

By default, if the client asks for a media type that your ASP.NET Web API service doesn’t support, the framework will
respond with the first available formatter (usually JSON, application/json). You would like to change this behavior,
so that in cases when a proper media type cannot be served, your Web API application automatically issues a 406
HTTP status code (Not Acceptable) instead.

Solution

You can enable this feature by appropriately modifying the DefaultContentNegotiator, the out-of-the-box
implementation of the content negotiating mechanism (IContentNegotiator), which has a built in option of issuing
406 responses automatically.

189

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

How It Works

As discussed in Chapter 4, ASP.NET Web API will go through a series of steps when trying to determine a relevant
formatter for a given HTTP request. As soon as a match is found, the result yields, and no further processing is done.
This gives the developers a chance to declare their rules at different precedence levels.

The steps are the following:

e Trying to match the MediaTypeMappings (see Recipe 4-9).
e Inspecting the client’s Accept header.
e Inspecting the client’s Content-Type header.

e Checking whether serialization with any formatter (in the order they are registered) is
possible.

If the content negotiation process does not yield any relevant formatter, then the Web API will issue a
406 Not Acceptable response to the client. However, this will never happen out of the box because, at worst,
the JSON formatter will match any kind of request. As mentioned, you can alter this behavior by tweaking
DefaultContentNegotiator, which has a designated constructor to achieve that result.

The Code

DefaultContentNegotiator has a constructor parameter that allows you to instruct it to skip checking on the last rule
(trying to determine if the serialization is possible) and issue a 406 response immediately.
You can swap the registered IContentNegotiator with its modified version on your HttpConfiguration object.

var negotiator = new DefaultContentNegotiator(excludeMatchOnTypeOnly: true);
httpConfiguration.Services.Replace(typeof(IContentNegotiator), negotiator);

As aresult, making an HTTP request, which expects an unsupported media type, will receive an automatic 406
Not Acceptable HTTP response, such as the one shown in Listing 6-22.

Listing 6-22. Request for an Unsupported Media Type and a 406 Response

GET http://localhost:999/api/values HTTP/1.1
User-Agent: Fiddler
Accept: text/plain
Host: localhost:999

HTTP/1.1 406 Not Acceptable
Content-Length: 0

Server: Microsoft-HTTPAPI/2.0

Date: Sun, 5 January 2014 13:31:45 GMT

6-7. Implement Versioning of a Web API with Centralized Routes
Problem

Your ASP.NET Web API application is usingCentralized routing and you would like to support versioning of your API
resources/endpoints.

190

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Solution
There are three primary ways of versioning a REST API:

e URI-based versioning

GET /api/Items HTTP 1.1
GET /api/v2/Items HTTP 1.1

e Header-based versioning
GET /api/Items HTTP 1.1

GET /api/Items HTTP 1.1
ApiVersion: 2

¢ Media type-based versioning

GET /api/Items HTTP 1.1
Accept: application/vnd.apress.recipes.webapi+json

GET /api/Items HTTP 1.1
Accept: application/vnd.apress.recipes.webapi-v2+json

URI-based versioning can be achieved using a customized routing definition. The latter two methods, header and
accept-based versioning, can be supported using a custom IHttpControllerSelector.

How It Works

IHttpControllerSelector is responsible for taking in a request and finding a relevant controller to handle this
request. The default implementation, DefaultHttpControllerSelector, gives precedence to attribute routing, and
in case a matching controller can be found by inspecting routes registered with attribute routing, that particular
controller is used.

If no match is found via attribute routing, DefaultHttpControllerSelector proceeds to try to obtain a controller
name from the request (normally from RouteData). Then the string name of the controller is used to find a matching
controller Type in the internal cache of controllers that it maintains. This GetControllerName method is virtual and
provides excellent extensibility points for supporting versioning.

Note The internals of routing in ASP.NET Web API are discussed in detail in Chapter 3.

The Code

In this section, you'll have a look at supporting different types of versioning for centralized routes. But before you do
that, let's define some sample models and controllers, representing different versions of your API (Listing 6-23). You'll
then use them throughout all of the examples.

191

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Listing 6-23. Sample Models Representing Different Versions of Resources

public class Item

{ public int Id { get; set; }
public string Name { get; set; }
public string Country { get; set; }
}
public class SuperItem : Item
i public double Price { get; set; }

Itemis the basic version 1 resource, whereas SuperItemwill be used in version 2 of your API. For simplicity
of illustration, the sample controllers (Listing 6-24) will only have a single GET method, as all the other action will
behave identically.

Listing 6-24. Sample Controllers Representing Different Versions of HTTP Endpoints

public class ItemsV2Controller : ApiController

{
public SuperItem Get(int id)
{
return new SuperItem { Id = id, Name = "Xbox One", Country = "USA", Price = 529.99 };
}
}
public class ItemsController : ApiController
{
public Item Get(int id)
{
return new Item { Id = id, Name = "PS4", Country = "Japan"};
}
}

In all of the cases, you'll resort to a custom IHttpControllerSelector. Creating a controller
selector that will respect the version is actually very easy, as long as you can find the version correctly. A
VersionAwareControllerSelector can be found in Listing 6-25.

Listing 6-25. Customized IHttpControllerSelector That Takes Versioning into Account

public class VersionAwareControllerSelector : DefaultHttpControllerSelector

{

public VersionAwareControllerSelector(HttpConfiguration configuration) : base(configuration) { }

public override string GetControllerName(HttpRequestMessage request)

{

var controllerName = base.GetControllerName(request);
var version = ??? //find the version somehow!

192

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

if (version > 0)

{
}

return GetVersionedControllerName(request, controllerName, version);

return controllerName;

}

private string GetVersionedControllerName(HttpRequestMessage request, string baseControllerName,
int version)

{
var versionControllerName = string.Format("{o}v{1}", baseControllerName, version);
HttpControllerDescriptor descriptor;
if (GetControllerMapping().TryGetValue(versionControllerName, out descriptor))
{
return versionControllerName;
}
throw new HttpResponseException(request.CreateErrorResponse(
HttpStatusCode.NotFound,
String.Format("No HTTP resource was found that matches the URI {0} and version number {1}",
request.RequestUri, version)));
}

Instead of implementing the interface directly, you can inherit from DefaultHttpControllerSelector, since it
has all the necessary logic and caching already, and exposes the methods necessary to support versioning as virtual
members. The idea here is very simple: when the controller selector finds a controller, you'll try to pick a version from
the HttpRequestMessage from URI or headers, and if you find it, the selector will try to find a versioned controller
through a convention—named the same but with a V{number } suffix—and use that one instead.

URI-Based Versioning

In order to provide correct routing to specific version of the controller, you may define a relevant route for each of the
versions.

config.Routes.MapHttpRoute("ItemsV2", "v2/items/{id}", new { controller = "ItemsV2",

id = RouteParameter.Optional });

config.Routes.MapHttpRoute("Items", "items/{id}", new { controller = "Items",

id = RouteParameter.Optional });

config.Routes.MapHttpRoute("default"”, "{controller}/{id}", new { id = RouteParameter.Optional });

In this case, a very specific template is provided to match the URI and use the relevant version of the controller
based on that. Of course, this is hardly optimal since you'd have to maintain a lot of routes by hand.
An alternative solution is to create a generic route that contains a version parameter.

config.Routes.MapHttpRoute("defaultVersioned", "vw{wersion}/{controller}/{id}", new

{ id = RouteParameter.Optional }, new { version = @"\d+" });
config.Routes.MapHttpRoute("default”, "{controller}/{id}", new { id = RouteParameter.Optional });

193

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

It can coexist along the default unversioned route because the version parameter is constrained (using regular
expression constraint) to be a number and to be preceded by a “v” so this route will match only very specific
request URIs.

This alone will not work yet; you will have to somehow hint to Web API how it should use the route parameter
representing a version to switch from the default controller to a versioned one. This can be achieved by implementing
a custom IHttpControllerSelector

But before doing that, let's create a helper class called VersionFinder, which you will use in this recipe (and also

the next one) to pull out version information from an HttpRequestMessage. It's shown in Listing 6-26.

Listing 6-26. VersionFinder, Responsible for Looking Up a Version in HttpRequestMessage

public class VersionFinder

{
private static bool NeedsUriVersioning(HttpRequestMessage request, out string version)
{
var routeData = request.GetRouteData();
if (routeData != null)
{
object versionFromRoute;
if (routeData.Values.TryGetValue("version", out versionFromRoute))
{
version = versionFromRoute as string;
if (!string.IsNullOrWhiteSpace(version))
return true;
}
}
}
version = null;
return false;
}
private static int VersionToInt(string versionString)
{
int version;
if (string.IsNullOrEmpty(versionString) || !int.TryParse(versionString, out version))
return O;
return version;
}
public int GetVersionFromRequest(HttpRequestMessage request)
{
string version;
if (NeedsUriVersioning(request, out version))
{
return VersionToInt(version);
}
return 0;
}
}

194

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

The class exposes a single method, GetVersionFromRequest, which can be used to obtain a version from the
client's request. You'll keep on extending it, but for now it only checks the URI and tries to pull out a version from
RouteData (according to the route template you just defined moments ago). If a version is found, the number of the
version is returned; otherwise, it is 0.

You can now update the VersionAwareControllerSelector to use the VersionFinder; see Listing 6-27.

Listing 6-27. Updated GetControllerName on the Custom Controller Selector, Using VersionFinder

public override string GetControllerName(HttpRequestMessage request)

{
var controllerName = base.GetControllerName(request);
var versionFinder = new VersionFinder();
var version = versionFinder.GetVersionFromRequest(request);
if (version > 0)
{
return GetVersionedControllerName(request, controllerName, version);
}
return controllerName;
}

One final thing is to register the selector as the one to be used by your APIL.
config.Services.Replace(typeof(IHttpControllerSelector), new VersionAwareControllerSelector(config));
And that’s all; you can now make requests such as

GET /api/Items HTTP 1.1
GET /api/v2/Items HTTP 1.1

and they will be routed properly to ItemsController and ItemsV2Controller.

Header-Based Versioning

In the previous example, with classes like VersionAwareControllerSelector and VersionFinder, you laid the
groundwork for the entire versioning infrastructure. Supporting different versioning mechanisms is therefore actually
extremely easy.

In order to allow your API to work with a relevant version header, say ApiVersion in this case, it’s just a matter
of extending the VersionFinder to look into the headers, instead of just the URI. There is no need to change
anything anymore in the VersionAwareControllerSelector. The method shown in Listing 6-28 should be added to
VersionFinder, and GetVersionFromRequest should be updated accordingly.

Listing 6-28. Updated VersionFinder, Supporting Header-Based Versioning

private static bool NeedsHeaderVersioning(HttpRequestMessage request, out string version)

{
if (request.Headers.Contains("ApiVersion"))
version = request.Headers.GetValues("ApiVersion").FirstOrDefault();

if (version != null)

195

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

return true;

}

version = null;
return false;

}

public int GetVersionFromRequest(HttpRequestMessage request)
{

string version;
if (NeedsUriVersioning(request, out version))

{
}

return VersionToInt(version);

if (NeedsHeaderVersioning(request, out version))

{
}

return 0;

return VersionToInt(version);

And that’s it. This small tweak now allows your API to support the following requests:
GET /api/Items HTTP 1.1

GET /api/Items HTTP 1.1
ApiVersion: 2

Media Type-Based Versioning

Versioning based on media types is a very powerful mechanism, as it allows you to decouple versioning of the
resource from both the versioning of the format and the protocol that it uses.

To support it in Web AP], all you need to do, similar to the previous example, is just extend your VersionFinder to
look into the Accept header and try to extract the version number from there. This is shown in Listing 6-29.

Listing 6-29. Updated VersionFinder, Supporting Accept-Based Versioning

private static bool NeedsAcceptVersioning(HttpRequestMessage request, out string version)
{
if (request.Headers.Accept.Any())
{
var acceptHeaderVersion =
request.Headers.Accept.FirstOrDefault(x => x.MediaType.Contains("vnd.apress.recipes.
webapi"));
if (acceptHeaderVersion != null 88& acceptHeaderVersion.MediaType.Contains("-v") &&
acceptHeaderVersion.MediaType.Contains("+"))
{

196

}

CHAPTER 6

version = acceptHeaderVersion.MediaType.Between("-v", "+");
return true;

}

version = null;
return false;

public int GetVersionFromRequest(HttpRequestMessage request)

{

string version;
if (NeedsUriVersioning(request, out version))

{
return VersionToInt(version);
}
if (NeedsAcceptVersioning(request, out version))
{
return VersionToInt(version);
}
if (NeedsHeaderVersioning(request, out version))
{
return VersionToInt(version);
}
return O;

EMBRACE HTTP WITH ASP.NET WEB API

With this change in place, your API will now extract a version out of the media type, but only in cases when such
an operation is possible. This allows you to respond with a relevant version to the following requests:

GET /api/Items HTTP 1.1
Accept: application/vnd.apress.recipes.webapi+json

GET /api/Items HTTP 1.1
Accept: application/vnd.apress.recipes.webapi-v2+json

Notice that in this final version of the VersionFinder, you have all three versioning mechanisms working side by
side, and you can change the precedence by shuffling around the checks inside the GetVersionFromRequest method.

6-8. Implement Versioning of a Web API with Attribute Routing

Problem

Your Web API application is using attribute routing and you would like to support versioning of your API resources/
endpoints.

197

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Solution

The core API versioning possibilities were mentioned in Recipe 6-7. All of them can be supported with attribute
routing.

e URI-based versioning: Already supported through the nature of attribute routing; it’s just a
matter of defining a correct route template on the relevant controller.

e Header-based versioning: Through a custom RouteFactoryAttribute.
e Media type-based versioning: Also through a custom RouteFactoryAttribute.

To cover all of these scenarios, and to follow the convention from Recipe 6-7, such a v{number} controller can
be decorated with routing attributes in the manner shown in the following code snippet, where VersionedRoute is a
custom implementation of RouteFactoryAttribute able to recognize the relevant version:

public class ItemsV2Controller : ApiController

{
[VersionedRoute("items/{id:int}", Version = 2)]
[Route("v2/items/{id:int}")]
public HttpResponseMessage Get(int id)
{
// omitted for brevity
}
}
How It Works

The DefaultHttpControllerSelector will give attribute routing priority. It will try to match the incoming request
with attribute routes by calling the internal GetDirectRouteCandidates on the HttpRouteData. If nothing is found,
the selector goes on to the process of looking up matches among the traditional routes registered by hand.
RouteFactoryAttribute is a convenience abstract class implementing IDirectRouteFactory (Listing 6-30).
By implementing this interface or extending RouteFactoryAttribute, you are able to extend the attribute routing
mechanism, providing, for example, custom constraints (the default RouteAttribute also implements it).

Listing 6-30. Definition of IDirectRouteFactory

public interface IDirectRouteFactory

{

RouteEntry CreateRoute(DirectRouteFactoryContext context);
}
The Code

The approach to versioning with attribute routing is similar to that from Recipe 6-7; however, there is no
IHttpControllerSelector in play. You'll still use VersionFinder in the exact same format as in Recipe 6-7 to extract
a version number from the incoming HttprequestMessage.

Let’s declare the following test controllers and incorporate the versioning support in a way that
ItemsV2Controller is the version 2 of ItemsController. The models used here were also defined in Recipe 6-7.

198

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Listing 6-31. Sample Controller Using Attribute Routing and its v2 Version

public class ItemsController : ApiController

{
[Route("items/{id:int}")]
public Item Get(int id)
{
return new Item { Id = id, Name = "PS4", Country = "Japan"};
}
}

public class ItemsV2Controller : ApiController
[22?] //see examples in this recipe
public SuperItem Get(int id)
{

}

return new SuperItem { Id = id, Name = "Xbox One", Country = "USA", Price = 529.99 };

URI-Based Versioning

Route declaration directly on the controller or action is the very nature of attribute routing. Therefore, supporting a
v{next} route is as simple as decorating the v{next} controller with the appropriate RouteAttribute. This is shown
in Listing 6-32.

Listing 6-32. Supporting URI-Based Versioning with Attribute Routing

public class ItemsV2Controller : ApiController

{
[Route("v2/items/{id:int}")]
public SuperItem Get(int id)
{
//omitted for brevity
}
}

This does not collide with the original route and enables the client to call both of the following endpoints without
any extra setup:

GET /api/Items HTTP 1.1
GET /api/v2/Items HTTP 1.1

Header-Based and Media Type-Based Versioning

The only difference between header-based and media-based versions is how the version is obtained from the
HttpRequestMessage (in the former case from ApiVersion header, in the latter from the Accept header), and
since this has already been handled by VersionFinder (again, see Recipe 6-8 for details) all that’s left to do to
incorporate support for attribute routing is to create a custom VersionConstraint (IHttpRouteConstraint) and a
RouteFactoryAttribute that will respect that version constraint (see Listing 6-33).

199

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Listing 6-33. Definition of the VersionConstraint, a Custom IHttpRouteConstraint Recognizing API Versions

public class VersionConstraint : IHttpRouteConstraint

{
private readonly int _version;
public VersionConstraint(int version)
{
_version = version;
}
public bool Match(HttpRequestMessage request, IHttpRoute route, string parameterName,
IDictionary<string, object> values, HttpRouteDirection routeDirection)
{
var versionFinder = new VersionFinder();
var version = versionFinder.GetVersionFromRequest(request);
return _version == version;
}
}

The VersionConstraint instance is specific to a given version number. This will be provided by the developer
annotating his API endpoint. In the Match method, you look into the VersionFinder and try to compare the version
extracted from the request with the one set on the constraint. The match is represented by trying to equate both of
those values.

The new route attribute is shown in Listing 6-34. It will take a version as a parameter, and constrain the route
using the VersionConstraint. Since the default value of int is 0, if it’s not set, the constraint will use version 0, which
matches the default response of VersionFinder (recall that if it doesn’t find a version in the HttpRequestMessage, it
will return 0 too).

Listing 6-34. Definition of VersionedRouteAttribute

public class VersionedRouteAttribute : RouteFactoryAttribute

{
public VersionedRouteAttribute(string template) : base(template)
{
Order = -1;
}
public int Version { get; set; }
public override IDictionary<string, object> Constraints
{
get
{
return new HttpRouteValueDictionary
{
{"", new VersionConstraint(Version)}
b
}
}
}

200

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

With these bits in place, you may now decorate your controllers with the new VersionedRouteAttribute, instead
of the default RouteAttribute. On the other hand, they are not mutually exclusive, and you can use them together as
well, like in Listing 6-35.

Listing 6-35. Versioned Controllers Decorated with Version-Aware VersionedRouteAttribute

public class ItemsController : ApiController

{
[VersionedRoute("items/{id:int}")] //version = 0, so default
public Item Get(int id)
{
return new Item { Id = id, Name = "PS4", Country = "Japan"};
}
}
public class ItemsV2Controller : ApiController
{
[VersionedRoute("items/{id:int}", Version = 2)]
[Route("v2/items/{id:int}")]
public SuperItem Get(int id)
{
return new SuperItem { Id = id, Name = "Xbox One", Country = "USA", Price = 529.99 };
}
}

This setup allows you to easily support all of the following versioned API calls:
GET /api/Items HTTP 1.1

GET /api/Items HTTP 1.1
ApiVersion: 2

GET /api/Items HTTP 1.1
Accept: application/vnd.apress.recipes.webapi+json

GET /api/Items HTTP 1.1
Accept: application/vnd.apress.recipes.webapi-v2+json

6-9. Use Custom HTTP Content
Problem

You previously implemented a custom MediaTypeFormatter, but would now like to move closer to the core
System.Net.Http HTTP abstractions when handling HTTP requests in your Web API application.

Solution

You can build a custom HttpContent implementation, which could be a wrapper for any specific media type you wish.
This is a very powerful technique as it allows you to package the media type into very clean, reusable logic (potentially
even in custom formatters), which can be used both on the server and the .NET client side.

201

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Building custom content means extending the base HttpContent class and implementing, at the very least, its
two abstract methods, as highlighted in Listing 6-36.

Listing 6-36. Definition of the Abstract HttpContent

public abstract class HttpContent : IDisposable
{
protected HttpContent();
public HttpContentHeaders Headers { get; }
public Task CopyToAsync(Stream stream);
public Task CopyToAsync(Stream stream, TransportContext context);
protected virtual Task<Stream> CreateContentReadStreamAsync();
public void Dispose();
protected virtual void Dispose(bool disposing);
public Task LoadIntoBufferAsync();
public Task LoadIntoBufferAsync(long maxBufferSize);
public Task<byte[]> ReadAsByteArrayAsync();
public Task<Stream> ReadAsStreamAsync();
public Task<string> ReadAsStringAsync();
protected abstract Task SerializeToStreamAsync(Stream stream, TransportContext context);
protected internal abstract bool TryComputeLength(out long length);

You can then follow up by writing useful extension methods for both HttpClient and HttpContent, responsible
for sending the custom content over the network, and for reading it into the relevant target format.

How It Works

SerializeToStreamAsync is responsible for writing the object contained by the HttpContent to the response or
request Stream (depending on the type of message being constructed).

TryComputeLength is used to provide the Content-Length header of the body of the HTTP message; to support
that in a custom content implementation, you can simply return the length of the Stream representing the object you
are wrapping in the HttpContent. However, the method itself does not have to return a valid content length in every
case (hence the Try prefix). You might set it to 0 and return false if you wish to operate in chunked transfer encoding or
in general are dealing with streamed resources of unknown length.

The Code

Let’s have a look at building a custom HttpContent implementation for protocol buffers, using protobuf-net. The
idea is very simple: in the constructor you can pass in a model to be serialized into the appropriate format and saved
into a MemoryStream. Then, in the SerializeToStreamAsync you can simply copy the saved Stream into the HTTP
message Stream, which will be passed into the method, as shown in Listing 6-37.

Listing 6-37. Definition of the Custom ProtoBufContent

public class ProtoBufContent : HttpContent
{

private readonly MemoryStream _stream;

public ProtoBufContent(object model)
{

_stream = new MemoryStream();

202

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Serializer.Serialize(_stream, model);

_stream.Position = 0;

Headers.ContentType = new MediaTypeHeaderValue("application/x-protobuf");
}

protected override Task SerializeToStreamAsync(Stream stream, TransportContext context)

{

return _stream.CopyToAsync(stream);

}
protected override bool TryComputelLength(out long length)
{
if (! _stream.CanSeek)
{
length = 0;
return false;
}
length = _stream.Length;
return true;
}
protected override void Dispose(bool disposing)
{
_stream.Dispose();
}

Using the new custom content is as easy as setting it as part of either HttpRequestMessage or
HttpResponseMessage (see Listing 6-38). Obviously, if you do that from the controller, you are also going to bypass the
ASP.NET Web API content negotiation process.

Listing 6-38. Using the ProtoBufContent in a Controller

public HttpResponseMessage Get()

{
var item = new Item
{
Id = 1,
Name = "Filip"
};
return new HttpResponseMessage(HttpStatusCode.OK)
{
Content = new ProtoBufContent(item)
};
}

To further simplify the process of dealing with protocol buffers, you can now provide convenient extension
methods for the base HttpContent class and for HttpClient, which will enhance the ProtobufContent operations.
They are shown in Listing 6-39.

203

CHAPTER 6 = EMBRACE HTTP WITH ASP.NET WEB API

Listing 6-39. Definitions of the ProtoBufContent-Aware Extensions Methods for HttpContent and HttpClient

public static class HttpContentExtensions

{
public static async Task<T> ReadAsProtoBuf<T>(this HttpContent content)
{
return Serializer.Deserialize<T>(await content.ReadAsStreamAsync());
}
}
public static class HttpClientExtensions
{
public static async Task<HttpResponseMessage> PostAsProtoBufAsync<T>(this HttpClient client,
string address, T obj)
{
return await client.PostAsync(address, new ProtoBufContent(obj));
}
}

With the HttpContent extension, you can quickly deserialize the response into a statically typed predefined
object. On the other hand, by using the HttpClient extensions, you can provide quick and easy access to
performing core HTTP operations, such as POST or GET, using the custom HttpContent. Those operations are
shown in Listing 6-40.

Listing 6-40. Using the ProtoBufContent-Aware Extensions Methods for HttpContent and HttpClient

//HttpContent extension
var item = await Request.Content.ReadAsProtoBuf<Item>();

//HttpClient extension
var itemToSend = new Item {Id = 10, Name = "Filip"};
var response = await client.PostAsProtoBufAsync(address, itemToSend);

204

CHAPTER 7

Exceptions, Troubleshooting,
and Documenting

This chapter covers dealing with exceptions in ASPNET Web API, debugging issues with ASP.NET Web API tracers,
and documenting your API endpoints with the ASP.NET Web API Help Page library.
You will learn how to do the following:

e Handle and log exceptions (Recipes 7-1, 7-2, and 7-3)

e Use Web API tracers (Recipes 7-4, 7-5, and 7-6)

e Write a custom Web API tracer (Recipe 7-7)

e AddaWeb API help page (Recipe 7-8)

e Customize a Web API help page (Recipes 7-9, 7-10, and 7-11)

7-1. Handle Exceptions with Filters
Problem

You need a simple mechanism for handling exceptions that might occur in your controllers’ actions.

Solution

It is common to deal with cross-cutting concerns through the use of filters. You can subclass an
ExceptionFilterAttribute and apply it selectively to a specific scope of your API:

e Individual actions (action level)
e All actions within a controller (controller level)
e Allactions in the API (global level)

While ASP.NET Web API provides a way of handling all errors globally (see Recipe 7-2), it is still quite useful to
be able to target specific actions with relevant exception handling mechanisms, rather than relying only on the
global one.

205

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

How It Works

In ASP.NET Web API, the exception filters will catch all of the errors that happen inside an action, as well as those
from inside any action filter, except for authorization and authentication exceptions as they are located higher in the
execution pipeline.

When ApiController executes a Web API action guarded by an exception filter, instead of invoking it
directly, it wraps it in an ExceptionFilterResult (a special implementation of IHttpActionResult). The
ExceptionFilterResult captures all exceptions and then respects the error handling logic defined in the appropriate
exception filters by passing the captured exception to them for processing.

ExceptionFilterAttribute implements an IExceptionFilter interface, and while you might go ahead and
implement your logic around the latter, the attribute version is a much easier starting point. See Listing 7-1.

Listing 7-1. 1ExceptionFilter Interface Defintion

public interface IExceptionFilter : IFilter

{

Task ExecuteExceptionFilterAsync(HttpActionExecutedContext actionExecutedContext,
CancellationToken cancellationToken);

The attribute exposes two core methods to override, for both synchronous and asynchronous exception
handling. See Listing 7-2.

Listing 7-2. Base Abstract ExceptionFilterAttribute Defintion

public abstract class ExceptionFilterAttribute : FilterAttribute, IExceptionFilter
{

public virtual void OnException(HttpActionExecutedContext actionExecutedContext)

{}

public virtual Task OnExceptionAsync(HttpActionExecutedContext actionExecutedContext,
CancellationToken cancellationToken)

{}

The Code

Consider an example of a custom exception that is raised by your application whenever a specific resource has been
permanently deleted. You can use the filter shown in Listing 7-3 to handle it.

206

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Listing 7-3. A Sample ExceptionFilterAttribute

public class ResourceRemovedException : Exception { }

public class ResourceRemovedAttribute : ExceptionFilterAttribute

{
public override void OnException(HttpActionExecutedContext actionExecutedContext)
{
if (actionExecutedContext.Exception is ResourceRemovedException)
{
actionExecutedContext.Response = new HttpResponseMessage(HttpStatusCode.Gone);
}
}
}

The custom filter will catch the exception and convert it into a response that is handy for the client, the HTTP
410 Gone response.

[ResourceRemoved]
public HttpResponseMessage Get(int id)
{
//some service accessed here throws ResourceRemovedException
}

Since exception handling can also be done asynchronously, you are able to take advantage of the APIs that
are remote or expensive to call in a much easier way, without blocking a thread. For example, you could have some
application-wide logging that allows you to log to a database in an asynchronous manner, as shown in Listing 7-4.

Listing 7-4. Async Call Done from Inside the Exception Filter

public class ResourceRemovedAttribute : ExceptionFilterAttribute

{
public async override Task OnExceptionAsync(HttpActionExecutedContext actionExecutedContext)
{
if (actionExecutedContext.Exception is ResourceRemovedException)
{
actionExecutedContext.Response = new HttpResponseMessage(HttpStatusCode.Gone);
await MyLogging.LogToDbAsync(actionExecutedContext.Exception); //example async call
}
}
}

7-2. Handle Exceptions Globally
Problem

You want to have a single place to handle all ASP.NET Web API exceptions, similar to an ASP.NET Application_Error
event, except Web API-specific. It should also be compatible with all types of Web API hosts.

207

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Solution

Since version 2.1, ASP.NET Web API exposes a very convenient mechanism for handling exceptions globally:
IExceptionHandler. It allows you to catch exceptions from almost everywhere within the API:

e Action execution

e Controller initialization

e Allfilters (even exceptions thrown by exception filters)
e Some MessageHandlers

e Routing exceptions

e Insome cases, MediaTypeFormatter exceptions

How It Works

IExceptionHandler, shown in Listing 7-5, exposes only a single method to implement, but like most Web API
services, it'’s much easier to work off the base abstract implementations instead (see Listing 7-6).

Listing 7-5. The Defintion of the IExceptionHandler Interface

public interface IExceptionHandler

{
}

Task HandleAsync(ExceptionHandlerContext context, CancellationToken cancellationToken);

Listing 7-6. Outline of the Abstract ExceptionHandler Which Should Be Used as a Base for Custom Handlers

public class ExceptionHandler : IExceptionHandler

{
public virtual void Handle(ExceptionHandlerContext context)
{
//can be overriden
}
public virtual Task HandleAsync(ExceptionHandlerContext context, CancellationToken
cancellationToken)
{
//can be overriden
}
public virtual bool ShouldHandle(ExceptionHandlerContext context)
{
//can be overriden
}
}

You are able to override the method responsible for handling the occurring exception and the base class actually
exposes the way to do it in both a synchronous and asynchronous way.

208

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

The Web API exception handling pipeline supports a single handler only. The exception details are exposed to
the handler through ExceptionHandlerContext. It exposes an ExceptionContext property, which, through its own
public properties, provides some key exception information such as HttpActionContext, HttpRequestContext,
HttpRequestMessage, HttpResponseMessage, or the actual exception. Those can be used to log or handle the
exception state of your Web API application appropriately.

BEWARE OF THE EXCEPTIONCONTEXT

Because the exception can be raised from different places in the Web API pipeline, there is no guarantee that
some of the properties on the ExceptionContext will not be null.

For example, an exception raised by a MessageHandler will not have an HttpActionContext. This has to be kept
in mind when you develop custom handler or logger (Recipe 7-3).

The Code

A sample of a customized ExceptionHandler is shown in Listing 7-8. Imagine that you want to intercept an unhandled
exception, create an exception ID so that your support staff can identify the exception later, and issue your client a
content-negotiated response with some generic information about the error, as well as the attached exception ID
(amodel for that is shown in Listing 7-7).

Listing 7-7. An Example of a DTO Wrapper Class Used for the Publicly Available Application Error Information

public class ErrorData

{
public string Message { get; set; }
public DateTime DateTime { get; set; }
public Uri RequestUri { get; set; }
public Guid ErrorId { get; set; }

}

The ExceptionHandler should be capable of returning a content-negotiated response; therefore it will use the
CreateResponse extension method off the HttpRequestMessage (for more on this, see Recipe 4-3). You instruct
the Web API pipeline to use a specific response by setting the Result property (which should be an instance of
IHttpActionResult) on the ExceptionHandlerContext. Registration of the custom handler happens against
HttpConfiguration.

Listing 7-8. An Implementation of a Sample ExceptionHandler

public class ContentNegotiatedExceptionHandler : ExceptionHandler

{
public override void Handle(ExceptionHandlerContext context)
{
var metadata = new ErrorData
{
Message = "An unexpected error occurred! Please use the ticket ID to contact support”,
DateTime = DateTime.Now,
RequestUri = context.Request.RequestUri,
ErrorId = Guid.NewGuid()
};

209

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

//log the metadata.ErrorId and the correlated Exception info to your DB/logs

//or, if you have IExceptionLogger (recipe 7-3), it will already have been logged

//omitted here for brevity
var response = context.Request.CreateResponse(HttpStatusCode.InternalServerError, metadata);
context.Result = new ResponseMessageResult(response);

ResponseMessageResult is an IHttpActionResult implementation, which doesn’t do anything except forward
an existing HttpResponseMessage instance directly to the client. It is a convenient helper in situations like the one
in Listing 7-8, where you have an instance of HttpResponseMessage that you'd like to send to the client, but the
framework expects an IHttpActionResult instead.

Registration of the handler is extremely simple; it only takes a single line of replacing the default
IExceptionHandler (the default one is a null-pattern implementation, so it does nothing).

config.Services.Replace(typeof(IExceptionHandler), new ContentNegotiatedExceptionHandler());

As aresult, the client who encounters an exception on its request will get a content-negotiated response that will
contain all the relevant metadata you want it to receive, as shown in Listing 7-9.

Listing 7-9. A Sample Response from the ExceptionHandler Built in this Chapter

Status: 500 Internal Server Error

{
Message: "An unexpected error occurred! Please use the ticket ID to contact support",
DateTime: "2014-01-19T14:07:49.0218346+01:00",
RequestUri: "http://localhost:999/api/my",
ErrorId: "3e6530ce-7530-40e9-8ec7-0aa60doed756"
}

7-3. Log Exceptions Globally
Problem

You would like to be able to log all of the exceptions happening in your Web API application, regardless of whether
IExceptionHandler is able to handle them or not.

Solution

Alongside IExceptionHandler (Recipe 7-2), ASP.NET Web AP, since version 2.1, provides a second exception-
related interface: IExceptionLogger. Its only role is to log exceptions rather than handle them. By implementing a
custom IExceptionlogger you are able to centralize all exception logging in a single place, as well as log those of the
exceptions that are normally uncatchable by IExceptionHandler.

How It Works

While both IExceptionLogger and IExceptionHandler seem similar at first glance, there is a clear difference between
the two. The former only supports logging an exception, while the latter allows you to respond with a specific error
response.

210

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

There are some situations where you may want to only log a response, and let the default Web API pipeline
respond to the client. Furthermore, it is also possible that an exception is thrown at the time when a response to the
client has already be sent; a good example might be a MediaTypeFormatter error while streaming a response body to
the client, after the headers have already been sent. At that point, the only thing left to do is to log the error.

Just like IExceptionHandler, IExceptionLogger constitutes a single method to implement (Listing 7-10). In
addition to that, the framework ships with an abstract base called ExceptionlLogger which makes it easier to create
custom implementations (Listing 7-11).

Listing 7-10. Definition of the IExceptionLogger Interface

public interface IExceptionlLogger

{
}

Task LogAsync(ExceptionLoggerContext context, CancellationToken cancellationToken);

Listing 7-11. Outline of the Abstract ExceptionLogger Which Should Be Used as a Base for Custom Loggers

public abstract class ExceptionlLogger : IExceptionlLogger

{
public virtual Task LogAsync(ExceptionLoggerContext context, CancellationToken
cancellationToken)
{
//can be overriden
}
public virtual void Log(ExceptionLoggerContext context)
{
//can be overriden
}
public virtual bool ShouldLog(ExceptionLoggerContext context)
{
//can be overriden
}
}

Contrary to exception handlers, of which only a single one can be registered against your application, Web API
supports multiple loggers. Each logger can make its own decision about participating in the logging process through
the ShouldLog method. Exception details are exposed to the logger through ExceptionLoggerContext. It exposes an
ExceptionContext property, which is the same as in the ExceptionHandler case (see Recipe 7-2).

The Code

A custom logger is extremely easy to implement. The example in Listing 7-11 creates one that is NLog-based. NLog is
a popular logging framework for .NET and can be installed from NuGet:

install-package NLog
NLog can be used to write to a number of different logging targets such as log files, database, email, or an event
log. It exposes its Logger instance through a static method called LogManager . GetCurrentClassLogger, which will be

used in this recipe to build a custom IExceptionLogger (Listing 7-12).

211

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Listing 7-12. Implementation of I[ExceptionLogger Wrapped Around NLog
public class NLogExceptionLogger : ExceptionlLogger

{
private static readonly Logger Nlog = LogManager.GetCurrentClassLogger();
public override void Log(ExceptionLoggerContext context)
{
Nlog.LogException(LogLevel.Error, RequestToString(context.Request), context.Exception);
}
private static string RequestToString(HttpRequestMessage request)
{
var message = new StringBuilder();
if (request.Method != null)
message.Append(request.Method);
if (request.RequestUri != null)
message.Append(" ").Append(request.RequestUri);
return message.ToString();
}
}

The logger simply grabs the ExceptionLoggerContext, produces some basic info based on the request
(HttpRequestMessage and exception properties are never null in the pipeline), and passes it, along with the
exception, to NLog.

Let’s consider an NLog configuration, such as the one shown in Listing 7-13, which logs to EventLog.

Listing 7-13. Sample NLog Configuration Responsible for Writing to EventLog

<configuration>
<configSections>
<section name="nlog" type="NLog.Config.ConfigSectionHandler, NLog"/>
</configSections>
<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5" />
</startup>
<nlog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<targets>
<target name="eventlog" xsi:type="EventlLog" layout="${message} ${exception:format=tostring}"
log="Application" source="My Web API Application" />
</targets>
<rules>
<logger name="*" minlevel="Trace" writeTo="eventlog" />
</rules>
</nlog>
</configuration>

Any exception thrown from the ASP.NET Web API pipeline will be logged in the Event Log with all the

necessary details, as long as the logger is registered in the HttpConfiguration. See Listing 7-14 for an example of such
alogentry.

212

http://www.w3.org/2001/XMLSchema-instance

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Notice that you add a new logger instead of replacing any existing one, since multiple loggers are supported.
You could keep adding different ones (responsible for writing to different output targets) here.
Registration is done like any other Web API service registration.

httpConfiguration.Services.Add(typeof(IExceptionLogger), new NLogExceptionLogger());

Listing 7-14. Sample Error Entry from the Event Log

GET http://localhost:999/api/my System.InvalidOperationException: unable to cast string "hello" into
int

at Apress.Recipes.WebApi.SelfHost.MyController.Get(IEnumerable’ 1 numbers) in d:\Dropbox\apress\
code\Apress.Recipes.WebApi.SelfHost\Apress.Recipes.WebApi.SelfHost\Program.cs:1ine 85

at lambda_method(Closure , Object , Object[])

at System.Web.Http.Controllers.ReflectedHttpActionDescriptor.ActionExecutor.<>c_ DisplayClass10.<
GetExecutor>b_ 9(Object instance, Object[] methodParameters)

at System.Web.Http.Controllers.ReflectedHttpActionDescriptor.ActionExecutor.Execute(Object
instance, Object[] arguments)

at System.Web.Http.Controllers.ReflectedHttpActionDescriptor.ExecuteAsync(HttpControllerContext
controllerContext, IDictionary 2 arguments, CancellationToken cancellationToken)

Tip The WebApiContrib project contains a very interesting package, WebApiContrib.Logging.Raygun, which is an
IExceptionLogger built to support the raygun.io error management service.

7-4. Add a Tracer
Problem

To troubleshoot a problem in your Web API application, you would like to inspect exactly what is happening internally
in the request pipeline on each HTTP call.

Solution

ASP.NET Web API provides a very handy tracing mechanism wrapped around a public interface called ITracelWriter,
which logs all internal operations of the Web API throughout its entire processing pipeline. The Web API team

ships a very basic implementation called SystemDiagnosticsTraceWriter, which writes its output to System.
Diagnostics.Trace

Note SystemDiagnosticsTraceWriter is not part of the core Web API. You have to pull down that package from
NuGet: Microsoft.AspNet.WebApi.TraceWriter

213

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

How It Works

ITraceWriter is extremely simple and consists of just a single method (see Listing 7-15), responsible for writing
a TraceRecord to any output at the appropriate TraceLevel. It always has access to the current HTTP request
message, too.

Listing 7-15. Definition of the ITraceWriter Interface

public interface ITraceWriter

{
void Trace(HttpRequestMessage request, string category, Tracelevel level,
Action<TraceRecord> traceAction) {}

Trace creates a new TraceRecord off a current HTTP request, with a specific TraceLevel (which is an
enumeration). It is then up to the developer to deal with it; in the case of the default implementation, it outputs the
record to System.Diagnostics.Trace.

The trace levels used by Web API are the following:

e Tracelevel.Info

e Tracelevel.Debug
e Tracelevel.Error
e Tracelevel.Fatal

e Tracelevel.Warn

The Code

To enable tracing in your ASP.NET Web API service, you can simply walk up to your Web API configuration and
register TraceWriter against it. You can do it like you would register any other service, or through an extension
method that the package provides. This is shown in Listing 7-16.

Listing 7-16. Registration of ITraceWriter

//regular registration
httpConfiguration.Services.Replace(typeof(ITraceWriter), new SystemDiagnosticsTraceWriter());

//through an extension method
httpConfiguration.EnableSystemDiagnosticsTracing();

In the first case, the tracer can also be configured in terms of verbosity and detail level, while the extension
method automatically sets it to TraceLevel.Info.

httpConfiguration.Services.Replace(typeof(ITraceWriter), new SystemDiagnosticsTraceWriter() {
Tracelevel = Tracelevel.Error });

From that point on, all ASP.NET Web API internal activities are logged to the Trace output.

214

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

7-5. Use an External Tracer
Problem

You are using a popular logging framework (such as NLog or log4net) and would like the ASP.NET Web API tracing
output to be redirected to it.

Solution

You need to add an adapter between the logging framework of your choice and the ITraceWriter. However, the good
news is that there is no need to reinvent the wheel, as the WebApiContrib project already provides a handful of logging
solutions which are ready to be used:

e WebApiContrib.Tracing.Log4Net
e WebApiContrib.Tracing.Nlog

How It Works

Similarly to the default TraceWriter example, the authors of these adapters utilize custom ITraceWriter
implementations to translate the TraceRecord to a log message understandable by the relevant logging framework.
Additionally, the ASP.NET Web API log levels have to be mapped to the corresponding framework log levels.

The Code

All WebApiContrib packages are available on NuGet, so adding them to your API solution is as simple as running the
NuGet installation:

install-package WebApiContrib.Tracing.Nlog
install-package WebApiContrib.Tracing.Log4Net

Enabling the custom tracers is done in the same way as registering the default TraceWriter. For example, NLog
is enabled like so:

httpConfiguration.Services.Replace(typeof(ITraceWriter), new NlogTraceWriter());

When ASP.NET Web API runs now, it will log all of its operations to the NLog output. These include things like
controller dispatching, action selection, filter execution, content negotiation, and formatting.

Note Remember that this relies on NLog being properly configured in your application already.

You would normally configure NLog in the root configuration file of your application, such as web. config for
Web-based API and app.config for self-hosted API. The intent here isn’t to go into details about NLog’s capabilities
(which are actually extremely vast), but config examples might look something like Listings 7-17 and 7-18.

215

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Listing 7-17. An NLog ConfigSection for Your Application’s Configuration File

<section name="nlog" type="NLog.Config.ConfigSectionHandler, NLog"/>
The actual configuration is in Listing 7-18.

Listing 7-18. A Sample NLog Configuration Directing All Output to a Text File

<nlog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<targets>
<target name="logfile" xsi:type="File" fileName="${basedir}/${date:format=yyyy-MM-dd}-webapi.log" />
</targets>
<rules>
<logger name="*" minlevel="Trace" writeTo="logfile" />
</rules>
</nlog>

7-6. Call the Tracer Manually
Problem

You are already using an ASP.NET Web API tracer in your application. However, instead of just having the Web API
pipeline log its internal messages to it, you would like to write your own custom log entries there as well.

Solution

ASP.NET Web API allows you to always grab an instance of the registered tracer through the global
HttpConfiguration object and use it as your own logging mechanism. This results in a coherent logging experience
and saves you the hassle of having to manually inject (and manage) a custom logger into different parts of your Web
API application.

To grab an instance of a tracer, you simply need to retrieve it from the current HttpConfiguration:

var tracer = httpConfiguration.Services.CGetTraceWriter();

The registered ITracelWriter can also be obtained off a current Ht tpRequestMessage (since the request always
has access to HttpConfiguration) at any point in the Web API pipeline.

var tracer = request.GetConfiguration().Services.CetTracehWriter();

Since, as shown, the tracer is available throughout the life cycle of the HTTP request, you can get a hold of it in all
key Web API artifacts (filters, message handlers, formatters, or controllers).

Interestingly, even in situations where you don’t have access to the current HttpRequestMessage (e.g. in your
custom services), when running a web-hosted Web API, you can still obtain an instance of the logger through the
static global GlobalConfiguration object if you are using the web host. This isn’t necessarily the best practice, but
might come in handy at times.

var tracer = GlobalConfiguration.Configuration.Services.GetTraceWriter();

216

http://www.w3.org/2001/XMLSchema-instance

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

How It Works

Custom trace messages will appear in between the internal Web API trace messages; if you registered some external
provider as your ITracelriter (i.e. NLog), obviously the custom messages will also be written there.

What's critical for debugging purposes is that you will also see the messages in the correct chronological context,
which can often help you identify whether things like model binding or formatting have already run or not.

The Code

As an example, say you want to always grab the tracer in the controller’s constructor, and then use it in whichever
action you want. This is shown in Listing 7-19.
Listing 7-19. A Sample Controller Calling the Currently Registered Tracer by Hand

public class DemoController : ApiController

{

private readonly ITraceWriter tracer;

public DemoController()
{

}

_tracer = Request.GetConfiguration().Services.GetTracehWriter();

public HttpResponseMessage Get()

{

_tracer.Info(Request, this.ControllerContext.ControllerDescriptor.ControllerType.FullName,
"I'm inside Get method!");

return new HttpResponseMessage();

}

If you recall from previous recipes, ITraceWriter is a simple interface with just one method, which makes
advanced usage scenarios rather difficult.

To solve this, and to simplify your work with the tracer, once you get hold of the current instance, you can use one
of the many extensions methods the framework provides. These are shown in Listing 7-20.

Listing 7-20. A Wide Range of Helper Extension Methods You Can Call on the Tracer

public static void Debug(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
string messageFormat, params object[] messageArguments)

public static void Debug(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception)

public static void Debug(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception, string messageFormat, params object[] messageArguments)

public static void Error(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
string messageFormat, params object[] messageArguments)

public static void Error(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception)

public static void Error(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception, string messageFormat, params object[] messageArguments)

217

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

public static void Fatal(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
string messageFormat, params object[] messageArguments)

public static void Fatal(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception)

public static void Fatal(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception, string messageFormat, params object[] messageArguments)

public static void Info(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
string messageFormat, params object[] messageArguments)

public static void Info(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception)

public static void Info(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception, string messageFormat, params object[] messageArguments)

public static void Trace(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Tracelevel level, Exception exception)

public static void Trace(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Tracelevel level, Exception exception, string messageFormat, params object[]

public static void Trace(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Tracelevel level, string messageFormat, params object[] messageArguments)

public static void Warn(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
string messageFormat, params object[] messageArguments)

public static void Warn(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception)

public static void Warn(this ITraceWriter traceWriter, HttpRequestMessage request, string category,
Exception exception, string messageFormat, params object[] messageArguments)

Allin all, the modularity of ASP.NET Web API makes it easy to replace its parts, and ITraceWriter is a great
example of that. As a result, you get very fine-grained control over your tracing and debugging mechanisms, without
the need to reinvent the wheel.

7-7. Write a Real-Time Tracer
Problem

For development/monitoring purposes, you would like to have a real-time tracer that pushes all information from
ITraceWriter to you as the requests flow into your API. In addition, you still want to log to your default trace provider.

Solution

You can add the real-time aspect to the tracing in your ASP.NET Web API by implementing a custom ITraceWriter
based on an ASP.NET SignalR hub. This allows you to facilitate a very fundamental requirement of any good tracing
implementation: immediate feedback, with the real-time aspect of SignalR. Furthermore, you can use this tracer as a
wrapper around your default one (say, an NLog-based one), and push the log messages to both tracers.

218

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

How It Works

While you are able to have only one trace writer registered in ASP.NET Web API, you can always wrap one tracer with
another. ASP.NET SignalR real-time communication framework is great for pushing messages to the connected client
in real time. Remember that you do not want to lose any log output (imagine that the client disconnects).

The easiest way to go about this is to wrap any existing trace implementation with a SignalR-based tracer.
Effectively you end up with two ITracelriters, one embedded into the other and calling it.

This very simple idea allows you to nicely separate the real-time aspect of the tracer from its core trace output.
This also allows you to control the real-time functionality at runtime, switching it on or off when needed.

The Code

The prerequisite will be to install ASP.NET SignalR from NuGet. The package will be different based on your host
environment.

Install-Package Microsoft.AspNet.SignalR // web host
Install-Package Microsoft.AspNet.SignalR.SelfHost // self host or OWIN

Before anything else, you will need to add the Katana (OWIN) Startup class, since SignalR is OWIN only. If you
are not on a web host, you will additionally need to add the WebApp.Start block (see Listing 7-21).

Listing 7-21. A Bare Minimum Startup Setup for SignalR

class Startup

{
public void Configuration(IAppBuilder app)

{
app.MapSignalR();

}

//for self-host
static void Main(string[] args)

{
string url = "http://localhost:8080";
using (WebApp.Start(url))
{
Console.WriteLine("Server running on {0}", url);
Console.ReadlLine();
}
}

If you recall, to create a Web API tracer you need to implement the ITraceWriter interface, which consists of a
single method. In the SignalR case it will look like in Listing 7-22.

219

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Listing 7-22. An Implementation of the Trace Method for the Real-Time Tracer

public void Trace(HttpRequestMessage request, string category, TracelLevel level, Action<TraceRecord>
traceAction)

if (level != Tracelevel.Off 8& !string.IsNullOrWhiteSpace(_hubname))

{
var record = new TraceRecord(request, category, level);
_hub.Value.Clients.All.logMessage(ComposeMessage(record));
_traceWriter.Trace(request, category, level, traceAction);
}

As discussed before, you can compose the tracer from two layers. The outer (this one) will be notifying
the subscribers about trace events in real time. The inner (represented by the _tracelriter field) will pass the
trace context to the regular tracer, which might log to anywhere, such as a text file or event log, as it could be any
ITraceWriter implementation.

The message is composed using a private method ComposeMessage which is not really interesting from the bigger
perspective of this implementation, as all it does is just concatenated strings; however, for the sake of documentation
let’s look at it. See Listing 7-23.

Listing 7-23. A Helper Method Creating a String with Log Message from TraceRecord

private static string ComposeMessage(TraceRecord record)

{
var message = new StringBuilder();
if (record.Request != null)
{
if (record.Request.Method != null)
message.Append(record.Request.Method);
if (record.Request.RequestUri != null)
message.Append(" ").Append(record.Request.RequestUri);
}
if (!string.IsNullOrWhiteSpace(record.Category))
message.Append(" ").Append(record.Category);
if (!string.IsNullOrWhiteSpace(record.Operator))
message.Append(" ").Append(record.Operator).Append(" ").Append(record.Operation);
if (!string.IsNullOrWhiteSpace(record.Message))
message.Append(" ").Append(record.Message);
if (record.Exception != null &8 !string.IsNullOrWhiteSpace(record.Exception.GetBaseException().
Message))
message.Append(" ").Append(record.Exception.GetBaseException().Message);
return message.ToString();
}

220

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Of course, the private variables that Trace method relies on (_hubname, _hub, and _traceWriter) have to come
from somewhere, usually from the constructor, so add them too. This is shown in Listing 7-24.

Listing 7-24. The Class Representing the Real-Time SignalR Tracer

public class SignalRTraceWrapper : ITraceWriter
{
private readonly ITraceWriter traceWriter;
private readonly Lazy<IHubContext> _hub = new Lazy<IHubContext>(() => GlobalHost.
ConnectionManager.GetHubContext(_hubname));
private static string _hubname = "trace";

public SignalRTraceWrapper(ITraceWriter traceWriter, string hubname)
{

_tracelWriter = tracelriter;

_hubname = hubname;

}

//rest omitted for brevity

The inner trace writer gets passed into SignalR tracer so that you can use it whenever the Trace method gets
invoked. Additionally, you pass in a hub name (indicating the destination to which SignalR should broadcast the log),
which is a static field (I'll explain soon) with a default value of trace.

The hub context is a Lazy<T> and gets resolved to a proper hub context whenever the Trace method is first called.
You'll expand on this technique further in Recipe 8-6, but for now this approach is sufficient.

You can now register the trace writer against your Web API configuration. For example,

config.Services.Replace(typeof(ITraceWriter), new SignalRTraceWrapper(new NlogTraceWriter(), "myLog"));

This will register NLogTracelriter (see Recipe 7-5 for more information about NLog-based trace writer) as the
inner tracer (for real, concrete logging) and the myLog hub will be registered as the destination for the SignalR
real-time log.

The final piece is the possibility to switch the real-time aspect of the tracer (the SignalR part) on and off.
Actually that is why you made the _hubname private variable static. This allows you to add in the switch as shown
in Listing 7-25.

Listing 7-25. The Switch Methods That Will Allow You to Switch the Real-Time Functionality On and Off

public static void Enable(string hubname)

{
_hubname = hubname;
}
public static void Disable()
{
_hubname = null;
}

221

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

If you recall, the log would execute if the following condition was met:

if (level != Tracelevel.Off 8& !string.IsNullOrWhiteSpace(_hubname))
{

}

//do stuff

So, if you nullify the _hubnanme, it will switch off logging. However, you probably don’t want to switch off the inner
tracer, just the SignalR real-time bits, so you should rewrite the condition as shown in Listing 7-26.

Listing 7-26. New Tracing Conditions Facilitating On and Off Switches for the Real-Time Tracing
if (level != Tracelevel.Off)

{
var record = new TraceRecord(request, category, level);
if (!string.IsNullOrWhiteSpace(_hubname))
_hub.Value.Clients.All.logMessage(ComposeMessage(record));
_traceWriter.Trace(request, category, level, traceAction);
}

As aresult, you have a nice real-time wrapper for any trace writer. You could now control its behavior with Enable
and Disable methods. You can also switch the output hub name as you wish.

SignalRTraceWrapper.Enable("traceHub");
SignalRTraceWrapper.Disable();

To be able to instantiate the tracer correctly, you just need a SignalR hub now; one without any extra
customizations will do, as long as you give it a name that you can later use inline with the tracer registration.

[HubName("trace")]
public class TraceHub : Hub

{}

The registration is done in a familiar fashion, except you have to pass in the inner tracer too. In this example, it
will be an NLog one and a hub name.

config.Services.Replace(typeof(ITracelWriter), new SignalRTraceWrapper(new NlogTraceWriter(), "trace"));
Now the last thing to do is to create some sort of an admin client that can listen to the messages broadcasted by

the SignalR hub and display the relevant info. Listing 7-27 shows a basic JS implementation (an HTML page), which
will display all logs in real time. Obviously, at the same time, NLog will do its logging job on the side.

Note The source code for this chapter uses a helper controller to serve that HTML page, but this is normally required
only if you are not using a web server capable of hosting static files.

222

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Listing 7-27. JS/HTML Client Listening for the Real-Time Tracer

<IDOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Real time Web API Trace</title>
</head>
<body>

<ul id="messages">
</body>

<script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.9.0.js"></script>
<script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/signalr/jquery.signalr-2.0.2.min.
js"></script>

<script type="text/javascript" src="http://localhost:9000/signalr/hubs"></script>

<script type="text/javascript">
$(function () {
hub = $.connection.trace;
hub.client.logMessage = function (data) {
$('#messages').prepend('<1li>"' + data + '</1i>');
b

$.connection.hub.start();

1

</script>
</html>

7-8. Create a Documentation Page for ASP.NET Web API
Problem

You would like your ASP.NET Web API to expose an overview page with information about all of your endpoints.

Solution

While such documentation could possibly be created by hand, ASP.NET Web API makes it trivially easy to generate an
API help page. In fact, the help page is already bundled in the default MVC (with Web API) or pure Web API project
templates in Visual Studio.

If you self-host or host on OWIN, or simply added Web API to your project by hand, you can always add the help
page functionality through an external library available on NuGet:

Install-Package Microsoft.AspNet.WebApi.HelpPage

How It Works

The help page functionality takes advantage of the IApiExplorer (and its default implementation, ApiExplorer),
which is a service that’s part of the core Web API. It exposes metadata information about every single endpoint of the
API through an ApiDescription object.

223

http://www.w3.org/1999/xhtml
http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.9.0.js
http://ajax.aspnetcdn.com/ajax/signalr/jquery.signalr-2.0.2.min.js
http://ajax.aspnetcdn.com/ajax/signalr/jquery.signalr-2.0.2.min.js

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Note ApiExplorer considers every variation of an HTTP method and an action (if a single action supports multiple
methods) as a separate APl endpoint, and provides a unique ApiDescription for each.

While the ASP.NET Web API help page is heavily customizable, there is nothing stopping you from implementing
a completely custom API documentation solution based on ApiExplorer directly (in fact, you may even expose that
documentation as its own separate API!).

The Code

After installation, ASP.NET Web API will generate the help page under Areas » HelpPage and, through
HelpPageAreaRegistration shown in Listing 7-28, register a default route enabling access to the help page.

Listing 7-28. Default Help Page Area Registration and Route Setup

public class HelpPageAreaRegistration : AreaRegistration

{ public override string AreaName
{
get
{
return "HelpPage";
}
}
public override void RegisterArea(AreaRegistrationContext context)
{ context.MapRoute(
"HelpPage Default",
"Help/{action}/{apild}",
new { controller = "Help", action = "Index", apild = UrlParameter.Optional });
HelpPageConfig.Register(GlobalConfiguration.Configuration);
}
}

That class is also the place to go for any help page routing changes. Depending on the type of customization you
would like to perform, a couple of other classes can be modified too.

e HelpController: The help page initialization, creation, and access rights.
e HelpPageApiModel: The model used to generate the help page.
e HelpPageSampleGenerator: Responsible for generating the samples.

e HelpPageConfig: Provides general configuration settings for the help page functionality. Out
of the box it doesn’t do anything, but it ships with predefined code snippets which can be
commented out, allowing you to set DocumentationProvider or control sample objects.

e /Views/Help/Index.cshtml: The main view rendering the landing page.
e /Views/Help/Api.cshtml: The detailed view of an individual API endpoint.

e /Views/Help/DisplayTemplates/*: Views used for individual samples, based on sample type.

224

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Since all API information is fed into the help page through ApiExplorer, the framework provides you with an
ApiExplorerSettingsAttribute, which you can use to hide a specific action or entire controller from being visible to
the help page (Listing 7-29).

Listing 7-29. Example of Hiding an Entire Controller and a Single Action from a Web API Help Page

[ApiExplorerSettings(IgnoreApi = true)]
public class ValuesController : ApiController

{
}

//omitted for brevity

[ApiExplorerSettings(IgnoreApi = true)]
public IEnumerable<string> Get()
{

}

return new string[] { "value1", "value2" };

ASPNET WEB APl HELP PAGE OUTSIDE OF ASPNET AND IIS

The Web API Help Page uses an MVC controller and Razor templates to provide its functionality. As such, it will
only work in web-hosted scenarios.

It is, however, relatively easy to adapt the help page to work on a self-host or under an OWIN host. You would
have to replace the HelpController with an ApiController capable of serving HTML with Razor views. Have a
look at Recipe 5-11 to see an example.

7-9. Add Custom Samples to ASP.NET Web API Help Page
Problem

You would like the ASP.NET Web API help page to display a sample response for a media type not supported by Web
API out of the box.

Solution

If your new media type is a text-based one (such as text/rss or text/csv), the Web API help page will automatically
display a sample using its own set of dummy data. You can still provide a specific sample response using
HelpPageConfig and its SetSampleResponse or SetSampleForMediaType methods.

If your media type is not text-based (such as text/pdf or application/bson), the Web API help page will skip it.
To support such media types in the help page, you need to do the following steps:

e Add a custom presentation model that will contain the sample.
e Add a custom view responsible for rendering the sample.

e Hook those up into the help page also using the same SetSampleResponse or
SetSampleForMediaType methods mentioned before.

In that case, since you control both the model and the display template, you are free to present the sample on the
help page exactly the way you wish; in other words, you can render a PDF or image, or embed a video.

225

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

How It Works

ASP.NET Web API Help Page makes it really easy to add support for additional help page samples. In fact, it will try
its best to automatically generate them for you by inspecting the Formatters collection of your HttpConfiguration
object and trying to pick up all the media types supported by your API. It will then invoke the relevant
MediaTypeFormatter on the dummy data, and show the sample as a TextSample on the help page. This will normally
cover all text-based scenarios.

In all other cases, or if you simply want to have full control over how the sample is presented, you need to create
a custom presentation model and add a view with the exact same name to the DisplayTemplates folder. Web API will
pick it up from there automatically.

The Code

For text-based formats, while ASP.NET Web API can generate the samples itself, HelpPageConfig lets you
replace the default samples with your own custom ones, either globally (SetSampleForMediaType) or per action
(SetSampleResponse).

For example, in Listing 7-30 you set an arbitrary RSS string as a sample for ValuesController and its Get action
for the text/rss media type.

Listing 7-30. Setting a Custom RSS Sample for a Specific Controller

var rss = @"<?xml version=""1.0
<rss version=""2.0"">
<channel>
<title>Title</title>
<description>Desc</description>
<link>http://www.test.com</1link>
<pubDate>Tue, 21 Jan 2014 18:45:00 +0000 </pubDate>

encoding=""UTF-8"" ?>

<item>

<title>Item</title>
<description>Desc</description>
<link>http://www.test.com/1</1ink>

<pubDate>Tue, 21 Jan 2014 18:45:00 +0000 </pubDate>
</item>

</channel>
</rss>";
config.SetSampleResponse(rss, new MediaTypeHeaderValue("text/rss"), "Values", "Get");

A good case study for adding support for non-text formats could be BSON. The BsonMediaTypeFormatter ships

together with Web API; however, out of the box the help page does not support it, displaying only a link to the BSON
spec instead, which is shown in Listing 7-31.

226

http://www.test.com
http://www.test.com/1

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Listing 7-31. Default Behavior of ASP.NET Web API Help Page for BSON Formatter

config.SetSampleForMediaType(
new TextSample("Binary JSON content. See http://bsonspec.org for details."),
new MediaTypeHeaderValue("application/bson"));

Since BSON is a binary format, you can display the raw bytes it produces, converted into HEX instead. To extend
the help page with this type of sample, you need a new sample model and a view. The model (Listing 7-32) will hold
the bytes while the view will use x. ToString("X2") to convert them to hexadecimal format.

Listing 7-32. ByteSample.cs and DisplayTemplates/ByteSample.cshtml

public class ByteSample
{

}

public byte[] Bytes { get; set; }

@model ByteSample

<pre class="wrapped">
@string.Concat(Model.Bytes.Select(x => x.ToString("X2")));
</pre>

As in the other cases, the sample itself is set in the HelpPageConfig. In this case, that would grab the
BsonMediaTypeFormatter and use it to serialize a sample string. This is shown in Listing 7-33 and the output
produced by such a customized help page can be seen in Figure 7-1.

Listing 7-33. Setting the Sample BSON Response

var bsonFormatter = new BsonMediaTypeFormatter();
byte[] bson;
using (var s = new MemoryStream())

bsonFormatter.WriteToStream(typeof(string), "Hello world", s, Encoding.UTF8);
bson = s.ToArray();
}
config.SetSampleForMediaType(
new ByteSample {Bytes = bson},
new MediaTypeHeaderValue("application/bson"));

227

http://bsonspec.org/

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

Figure 7-1. Output from the customized help page

As a result, your help page can now produce the output shown in Figure 7-1.

7-10. Add Filters Information to ASP.NET Web API Help Page
Problem

You have some action filters on your ASP.NET Web API actions, such as providing authorization functionality or
caching. You would like the filters to be taken into account by the ASP.NET Web API help page.

Solution

You have to extend HelpPageApiModel with additional properties, such as:
e public bool RequiresAuthorization { get; set; }
e public bool IsCached { get; set; }

The HelpPageConfigurationExtensions class contains a private method called GenerateApiModel. That method
generates the help page model, which represents an API action. Since the Web API help page is added to your project
as raw source code, there is nothing preventing you from modifying this method, reading the FilterAttributes from
inside it, and setting the relevant information on the newly extended HelpPageApiModel. Finally, HelpPageApiModel.
cshtml, which is responsible for presenting the data to the user, should be modified to properly display information
from the extra properties.

228

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

How It Works

When you arrive at an API page, the Api action, shown in Listing 7-34, of the HelpController is invoked.

Listing 7-34. Action Responsible for Rendering API Endpoint Details
public ActionResult Api(string apild)

{
if (!String.IsNullOrEmpty(apild))
HelpPageApiModel apiModel = Configuration.GetHelpPageApiModel (apild);
if (apiModel != null)
{
return View(apiModel);
}
}
return View(ErrorViewName);
}

The GetHelpPageApiModel method will be used to create the model for the given API endpoint (represented by
apild). That public method will in turn call the private GenerateApiModel just mentioned. The GenerateApiModel
method has access to the ApiDescription object, which exposes an ActionDescriptor relevant for the given action.
ActionDescriptor can be used to obtain all Filters applied to an action and set them on the model.

What'’s important is that ActionDescriptor, through its GetFilterPipeline method, allows you to look at the
entire filter pipeline, which will pick up action filters not only applied directly to the action, but at the controller or at
the global level too.

The Code

Consider the sample setup shown in Listing 7-35, a simple controller with two filters applied, a built-in
AuthorizationFilterAttribute and a custom CachedFilterAttribute (its implementation details are completely
irrelevant for this discussion).

Listing 7-35. A Sample Controller with Two Filters

[Authorize]
public class MyController : ApiController
{
public string Get()
{
return "Hello world";
}
[Cached]
public string Get(int id)
{
return "Hello world " + id;
}

229

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

You are able to check against the presence of both Authorize and Cached in the GenerateApiModel quite easily
(Listing 7-36) using the techniques already mentioned in the solution part of this recipe.

Listing 7-36. Finding Out If a Filter Pipeline Contains a Specific Filter

if (apiDescription.ActionDescriptor.GetFilterPipeline().Any(x => x.Instance is
IAuthorizationFilter))
apiModel.RequiresAuthorization = true;

if (apiDescription.ActionDescriptor.GetFilterPipeline().Any(x => x.Instance is CachedAttribute))
apiModel.IsCached = true;

CATERING FOR ALLOWANONYMOUS

If you would like to verify that your action isn’t subject to the [AllowAnonymous] attribute, you have to apply an
additional check. apiDescription.ActionDescriptor.GetCustomAttributes<AllowAnonymousAttribute>().
Any() &3 apiDescription.ActionDescriptor.ControllerDescriptor.GetCustomAttributes<AllowAnonym
ousAttributes>().Any()

This is because [AllowAnonymous] is only a decorator attribute and is not part of the filter pipeline, so you have
to check for its presence on both the action and controller level using GetCustomAttributes directly.

As a final step, you need to tweak the HelpPageApiModel. cshtml to display information about the filters
(Listing 7-37).

Listing 7-37. Relevant Razor Code Displaying Info About the Filters

<h2>Response Information</h2>
<h3>Resource Description</h3>
<p>@description.ResponseDescription.Documentation</p>

@if (Model.RequiresAuthorization)

{
<h3>Requires Authorization.</h3>
}
@if (Model.IsCached)
{
<h3>Caching Enabled.</h3>
}

230

CHAPTER 7 © EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

7-11. Support Data Annotations in ASP.NET Web API Help Page
Problem

You would like the ASP.NET Web API help page to display information about data annotations you used in your
models (DTOs) to notify the client what is required and which property will be validated in which way.

Solution

The ASP.NET Web API help page supports the most common data annotations out of the box, and the restrictions
imposed by them on your models are displayed automatically. However, it’s also very easy to add support for
additional or completely custom data annotations, as well as to tweak the messages of the already supported ones.

To do that, you have to add those additional annotation attributes to the ModelDescriptionGenerator class and
its private AnnotationTextGenerator dictionary, which is used by the help page in the generation process.

How It Works

The ASP.NET Web API help page uses the GetOrCreateModelDescription method on the
ModelDescriptionGenerator class to generate a description of the parameters of your Web API actions. Depending
on the parameter type, the result is one of the classes derived from an abstract ModelDescription:

e ComplexTypeModelDescription
e SimpleTypeModelDescription

e CollectionModelDescription

e DictionaryModelDescription

e EnumTypeModelDescription

e KeyValuePairModelDescription

If the model type happens to be a complex type indeed, ComplexTypeModelDescription is used, and the
AnnotationTextGenerator dictionary is checked to provide descriptions for the supported annotations.
Out of the box, the following annotations are supported:

e RequiredAttribute

e RangeAttribute

e MaxLengthAttribute

e MinLengthAttribute

e StringlengthAttribute

e DataTypeAttribute

e RegularExpressionAttribute

Whenever you arrive at a help page documenting an API resource, the relevant ModelDescription will be
generated. For complex types, the view ComplexTypeModelDescription.cshtml will be selected, which in turn will
use Parameters.cshtml to render annotation information. If you want to tweak the look and feel of the annotations
presentation, this is the place to go.

231

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING

The Code

Consider an example of CompareAttribute and EmailAddressAttribute (both introduced into System.
ComponentModel.DataAnnotations in .NET 4.5), which are not supported by the help page by default.

CompareAttribute is used to compare two properties on the model against each other (such as Password and
RepeatPassword), while EmailAddressAttribute is used to ensure a valid email address. To support them in your
help page, all you need are two additional entries in the aforementioned AnnotationTextGenerator dictionary, which
is shown in Listing 7-38.

Listing 7-38. AnnotationTextGenerator Dictionary with a Custom Entry Added at the End

private readonly IDictionary<Type, Func<object, string>>AnnotationTextGenerator = new
Dictionary<Type, Func<object, string>>

{ typeof(RequiredAttribute), a => "Required" },
{ typeof(RangeAttribute), a =>

RangeAttribute range = (RangeAttribute)a;
return String.Format(CultureInfo.CurrentCulture, "Range: inclusive between {0}
and {1}", range.Minimum, range.Maximum);

}
1
{ typeof(MaxLengthAttribute), a =>

MaxLengthAttribute maxLength = (MaxLengthAttribute)a;
return String.Format(CultureInfo.CurrentCulture, "Max length: {0}",
maxLength.Length);

}
1
{ typeof(MinLengthAttribute), a =>

MinLengthAttribute minLength = (MinLengthAttribute)a;

return String.Format(CultureInfo.CurrentCulture, "Min length: {0}",
minLength.Length);

}
}s
{ typeof(StringlLengthAttribute), a =>
StringlengthAttribute strlength = (StringlengthAttribute)a;

return String.Format(CultureInfo.CurrentCulture, "String length: inclusive
between {0} and {1}", strLength.MinimumLength, strLength.MaximumLength);

}
1
{ typeof(DataTypeAttribute), a =>
DataTypeAttribute dataType = (DataTypeAttribute)a;
return String.Format(CultureInfo.CurrentCulture, "Data type: {0}",
dataType.CustomDataType ?? dataType.DataType.ToString());

1

232

CHAPTER 7 * EXCEPTIONS, TROUBLESHOOTING, AND DOCUMENTING
{ typeof(RegularExpressionAttribute), a =>
RegularExpressionAttribute regularExpression = (RegularExpressionAttribute)a;

return String.Format(CultureInfo.CurrentCulture, "Matching regular expression
pattern: {0}", regularExpression.Pattern);

}
{ typeof(CompareAttribute), a =»>
{
CompareAttribute compare = (CompareAttribute)a;
return String.Format(CultureInfo.CurrentCulture, "Must match: {o}",
compare. OtherProperty);
}
b

{ typeof(EmailAddressAttribute), a => "Must be a valid email" }
};

With this change in place, the help page will now display a "Must match" note beside each of the properties that are
subject to comparison and a "Must be a valid email" note beside each email-type property, as seen in Figure 7-2.

POST api/Test

Request Information

URI Parameters

Body Parameters

Mame Descrigtion Type Additional information

Figure 7-2. Custom Annotations Shown in the Help Page

Note If you use data annotations that are not supported by the help page, the generator will simply ignore them and
the help page will display None in the Additional information column.

233

CHAPTER 8

Cross Domain and Push
Communication

In this chapter, you'll explore how to overcome browser restrictions when it comes to crossing the origin boundaries
in AJAX communication. Moreover, since all modern web applications need to have a flavor of real-time to them,
you'll look at how you can facilitate push communication from the Web API to the client and how to integrate
real-time duplex communication between the client and your Web API application.

You will learn how to do the following:

e UseJSONP and CORS for cross-origin communication (Recipes 8-1, 8-2, and 8-3)
e Support streaming and pushing data from Web API with PushStreamContent (Recipe 8-4)
e Support server-sent events and the text/eventstream media type (Recipe 8-5)

e Integrate SignalR and use web sockets with Web API (Recipes 8-6 and 8-7)

8-1. Use JSONP in ASP.NET Web API
Problem

You need to support cross-domain GET requests and would like to add JSONP support to your AP

Solution

WebApiContrib already has a JsonpMediaTypeFormatter, so adding it to your Web API application is as easy as
installing it from NuGet and enabling it in your HttpConfiguration.

Install-package WebApiContrib.Formatting.Jsonp
The WebApiContrib implementation requires you to pass an instance of a regular JSON formatter, as it will be used
for JSON serialization of the JSONP responses. It also ships with JsonpQueryStringMapping (see Recipe 4-9 for more

information about mappings), ensuring that JSONP only kicks in when a “callback” parameter is passed by the client.

var jsonpFormatter = new JsonpMediaTypeFormatter(config.Formatters.JsonFormatter);
httpConfiguration.Formatters.Insert(0, jsonpFormatter);

235

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

How It Works

The solution presented here relies on a custom MediaTypeFormatter, which is only going to handle GET requests
that have a QueryString “callback” parameter included with them. Then, the body of the request gets wrapped in the
brackets, with the callback parameter value in front of it to adhere to the JSONP standard.

Many popular client-side libraries such as jQuery or AngularJS support JSONP out of the box and, as long as you
use their correct API methods, they will generate the request with the relevant callback parameter for you.

On the Web API side, by using a custom formatter which is able to handle the callback, you can then respond in
the appropriate format, as shown in Listing 8-1.

Listing 8-1. Sample JSONP Request and Response Originated from jQuery

GET api.domain.com/books?callback=jQuery210002522223792038858 13946135764628 =1394613576463 HTTP/1.1
Referer: http://main.domain.com

HTTP/1.1 200 OK

Content-Length: 395

Content-Type: text/javascript; charset=utf-8

jOuery210002522223792038858 1394613576462 ([

{"Id":1,"Author":"John Robb","Title":"Punk Rock: An Oral History"},
{"Id":2,"Author":"Daniel Mohl","Title":"Building Web, Cloud, and Mobile Solutions with F#"},
{"Id":3,"Author":"Steve Clarke","Title":"100 Things Blue Jays Fans Should Know & Do Before
They Die"}]);

How exactly was this response produced? In the MediaTypeFormatter responsible for JSONP handling, inside
the WriteToStreamAsync method, the body of the response is wrapped in the value of the callback parameter and the
brackets, as shown in Listing 8-2; it’s a simplified version of the code present in the WebApiContrib implementation.
Asyou can see, the core job of the formatter is to inject the callback into the response, and then delegate the actual
serialization process to the default JsonMediaTypeFormatter.

Listing 8-2. A Basic Example of WriteToStreamAsync for JSONP Formatter

public override async Task WriteToStreamAsync(Type type, object value, Stream stream, HttpContent
content, TransportContext transportContext)

{
var encoding = SelectCharacterEncoding(content.Headers);
using (var writer = new StreamWriter(stream, encoding, 4096, true))
writer.Write(_callback + "(");
writer.Flush();
await jsonMediaTypeFormatter.WriteToStreamAsync(type, value, stream, content, transportContext);
writer.Write(");");
writer.Flush();
}
}

Tip Due to the limitations of JSONP (GET-support only), using CORS for cross-domain requests instead (Recipes 8-2
and 8-3) will give you much more flexibility. JSONP should be used if you need to support old browsers, such as IE7,
which do not have CORS support.

236

http://main.domain.com/

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

The Code

Let’s look at a complete example (Listing 8-3) of adding support for JSONP in your Web API. In the API, you'll use a
sample controller and a model representing book resources, and you'll call this controller from a different domain.
To avoid unnecessary complexity, an in-memory list represents the data store.

Listing 8-3. A Sample Model and a Controller That Will Support JSONP

public class Book

{
public int Id { get; set; }
public string Author { get; set; }
public string Title { get; set; }
}
public class BooksController : ApiController
{
private static List<Book> _books = new List<Book>
{
new Book {Id = 1, Author = "John Robb", Title = "Punk Rock: An Oral History"},
new Book {Id = 2, Author = "Daniel Mohl", Title = "Building Web, Cloud, and Mobile
Solutions with F#"},
new Book {Id = 3, Author = "Steve Clarke", Title = "100 Things Blue Jays Fans Should
Know & Do Before They Die"},
new Book {Id = 4, Author = "Mark Frank", Title = "Cuban Revelations: Behind the Scenes
in Havana "}
};
[Route("books")]
public IEnumerable<Book> GetAll()
{
return _books;
}
}

The configuration process is very simple and you have already looked at it before, but it’s shown here again in
Listing 8-4. What’s important to note is that JsonpMediaTypeFormatter takes a second parameter in its constructor,
allowing you to provide a name for the callback parameter. It defaults to “callback’; but should you need to support a
different one, you can do that too.

Listing 8-4. Enabling the JSONP Formatter in Your HttpConfiguration

var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();

var jsonpFormatter = new JsonpMediaTypeFormatter(config.Formatters.JsonFormatter);
config.Formatters.Insert(0, jsonpFormatter);

Now, on the client side, you'll create a brand new web application, which will sit on a different domain, subdomain,

or port from your API because a difference in any one of those will make browsers treat the request as cross domain. In
this application, you will add some HTML and a request for a book list in a JSONP format. This is shown in Listing 8-5.

237

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

Listing 8-5. A Sample Application Using Bootstrap, Knockout]S, and jQuery, Making a JSONP Request to the Web API

<html lang="en">
<head>
<titles</title>
<link href="Content/bootstrap.css" rel="stylesheet" />
<link href="Content/bootstrap-theme.css" rel="stylesheet" />

<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/knockout-3.1.0.js"></script>
<script src="Scripts/bootstrap.js"></script>

<script type="text/javascript">
$(document).ready(function () {
var vm = new Apress.Books();
ko.applyBindings(vm);
vm.loadBooks();
D;

var Apress = Apress || {};
Apress.Books = function () {
var self = this;

self.books = ko.observableArray([]);

self.loadBooks = function () {
$.ajax("http://localhost:9000/books", {
dataType: 'jsonp'
1))

.done(function (data) {
$.each(data, function (idx, item) {
self.books.push(item);

D;
1))
.fail(function (xhr, status, error) {
alert(status);
D;
};
};
</script>
</head>
<body>

<div class="container">
<ul data-bind="foreach: books, visible: books().length > 0">
<1li>
<h3 data-bind="text: Title"></h3>
<small data-bind="text: Author"></small>

</1i>

</divy>
</body>
</html>

238

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

If the request is sent from jQuery without the dataType: ' jsonp', you'll see an error; in other cases, the request
will succeed, and the view will be correctly populated with the list of books. Likewise, since JSONP is GET-only, all
HTTP methods other than GET will be blocked by the browser.

8-2. Use CORS in ASP.NET Weh API
Problem

You would like to enable CORS (cross-origin resource sharing) support in your Web API service.

Solution

ASP.NET Web API introduced support for CORS in version 2 of the framework, as a community contribution from Brock
Allen. It shipped not as part of the core Web API, but as an additional package which you can install from NuGet.

Install-package Microsoft.AspNet.WebApi.Cors

To enable CORS, you need call the EnableCors extension method against your Web API HttpConfiguration.
httpConfiguration.EnableCors();

However, this alone doesn’t introduce any specific CORS rules yet; it merely activates the infrastructure required
by the CORS components. Afterwards, to support CORS in individual actions or controllers, you have to decorate

them with an EnableCorsAttribute, which is applicable to both methods and classes.

[EnableCors(origins: "http://allowed.origin.ch", headers: "*", methods:"GET ")]
public class BooksController : ApiController {}

Alternatively, you can provide a specific global policy by passing an attribute instance to the EnableCors method.

httpConfiguration.EnableCors(new EnableCorsAttribute(origins: "http://allowed.origin.ch”,
headers: "*", methods:"GET "));

Note EnableCorsAttribute takes several strings in its constructor. The examples here use named parameters for
readability but they can easily be omitted too.

How It Works

CORS is a W3C specification that allows a JavaScript client (browser) and a server to agree on relaxing the same-origin
policy in their bilateral communication. CORS is enforced and supported by all modern browsers, but needs to be
explicitly supported on the server side.

239

http://allowed.origin.ch/
http://allowed.origin.ch/

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

User agents commonly apply same-origin restrictions to network requests. These restrictions
prevent a client-side Web application running from one origin from obtaining data retrieved from
another origin, and also limit unsafe HTTP requests that can be automatically launched toward
destinations that differ from the running application’s origin. In user agents that follow this pattern,
network requests typically include user credentials with cross-origin requests, including HTTP
authentication and cookie information.

Cross-Origin Resource Sharing specification
www.w3.0rg/TR/cors/

Tip Contrary to the situation with JSONP, CORS can be used with all HTTP verbs, not just GET.

In the Web API implementation, under the hood, the EnableCors method registers a CorsMessageHandler in the
Web API execution pipeline. It also marks the request as being CORS-enabled by adding an MS_CorsEnabledKey key to
the request’s properties dictionary with a value true.

Every request coming into the system will have to flow through this handler, which will compare the request’s
contextual information, such as origin and HTTP method with the CORS settings defined, by default looking them
up in the attributes, or, in case a custom provider or custom provider factory are registered, through them. It will then
emit the appropriate CORS response headers.

CorsMessageHandler will also handle preflight requests should the browser send any. Preflight requests are sent
by browsers for non-trivial HTTP calls and use the HTTP OPTIONS verb call. They are effectively a handshake calls to
obtain permissions from the server. Successful response to a preflight request is the followed by the regular AJAX call.

A sample preflight request and response are shown in Listing 8-6.

Listing 8-6. Sample Preflight Request and Response

OPTIONS http://localhost:9000/books HTTP/1.1
Access-Control-Request-Method: POST

Origin: http://localhost:43641
Access-Control-Request-Headers: content-type
Accept: application/josn

HTTP/1.1 200 OK

Access-Control-Allow-Origin: http://localhost:43641
Access-Control-Allow-Methods: GET,POST,
Access-Control-Allow-Headers: Content-Type

Interestingly, CORS support also integrates very well into Web API’s tracing infrastructure, so if you use an
implementation of ITraceWriter (discussed in Chapter 7), you'll see the relevant CORS information showing up there
too: the CORS policy provider selection, the policy selection process, and finally, the result and validity of the response.

The Code

To see an example of CORS in action, let’s extend the BookController example used in Recipe 8-1. If you read it, you
will already be familiar with the structure, but it’s shown again in Listing 8-7 along with some extra actions. You'll
throw away JSONP and use CORS instead; and since CORS supports every HTTP method, you can add some of the
more complicated functionality such as the ability to POST a new book from the client.

240

http://www.w3.org/TR/cors/

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

Listing 8-7. A Sample Model and a Controller That Will Support CORS

public class Book

{
public int Id { get; set; }
public string Author { get; set; }
public string Title { get; set; }
}
public class BooksController : ApiController
{
private static List<Book> _books = new List<Book>
{
new Book {Id = 1, Author = "John Robb", Title = "Punk Rock: An Oral History"},
new Book {Id = 2, Author = "Daniel Mohl", Title = "Building Web, Cloud, and Mobile Solutions
with F#"},
new Book {Id = 3, Author = "Steve Clarke", Title = "100 Things Blue Jays Fans Should Know &
Do Before They Die"},
new Book {Id = 4, Author = "Mark Frank", Title = "Cuban Revelations: Behind the Scenes in
Havana "}
};
[Route("books")]
public IEnumerable<Book> GetAll()
{
return _books;
}
[Route("books/{id:int}", Name = "GetBookById")]
public Book GetById(int id)
{
return books.FirstOrDefault(x => x.Id == id);
}
[Route("books")]
public IHttpActionResult Post(Book book)
{
book.Id = books.Last() != null ? books.Last().Id + 1 : 1;
_books .Add(book) ;
return CreatedAtRoute("GetBookById", new {id = book.Id}, book);
}
}

The HTML and JavaScript allowing the user to add new books is shown in Listing 8-8. As you can see, the

sendBook function is performing a typical POST request, just as if you weren’t crossing the origin boundaries. In other

words, the developer does not have to do anything, as all the responsibility of making this work lies on the browser

and the server.

241

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

Listing 8-8. A Sample Application Using Bootstrap, Knockout]S, and jQuery, Making a CORS Requests to the Web API

<html lang="en">
<head>
<titles</title>
<link href="Content/bootstrap.css" rel="stylesheet" />
<link href="Content/bootstrap-theme.css" rel="stylesheet" />

<script src="Scripts/jquery-2.1.0.js"></script>
<script src="Scripts/knockout-3.1.0.js"></script>
<script src="Scripts/bootstrap.js"></script>

<script type="text/javascript">
$(document).ready(function () {
var vm = new Apress.Books();
ko.applyBindings(vm);
vm. loadBooks();
1;

var Apress = Apress || {};
Apress.Books = function () {
var self = this;

self.books = ko.observableArray([]);

self.loadBooks = function () {
$.ajax("http://localhost:9000/books")
.done(function (data) {
$.each(data, function (idx, item) {
self.books.push(item);
D;

1)

.fail(function (xhr, status, error) {
alert(status);
D;
};

self.sendBook = function() {
$.ajax("http://localhost:9000/books", {
type: "POST",
contentType: "application/json",
dataType: 'json',
data: JSON.stringify({Title: self.newBook.Title(), Author: self.newBook.Author()})
H
.done(function (data) {
self.books.push(data);

}
.fail(function (xhr, status, error) {
alert(status);
1
b
b
</script>
</head>

242

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

<body>
<div class="container">
<ul data-bind="foreach: books, visible: books().length > 0">
<1li>
<h3 data-bind="text: Title"></h3>
<small data-bind="text: Author"></small>
</1i>

<div class="input-group">
<input type="text" class="form-control" placeholder="Title"
data-bind="value: newBook.Title" />
<input type="text" class="form-control" placeholder="Author"
data-bind="value: newBook.Author" />
<button type="button" class="btn btn-default" data-bind="click: sendBook">Send</button>
</div>
</div>
</body>
</html>

Now all that’s required on the server side is to initialize the CORS support at application startup and decorate the
BooksController with EnableCorsAttribute. This is shown in Listing 8-9.
Listing 8-9. Applying CORS to the Web API in the Configuration and to the BooksController

var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();
config.EnableCors();

[EnableCors(origins: "http://localhost:43641/", headers: "*", methods:"GET,POST")]
public class BooksController : ApiController {}

8-3. Create Custom CORS Policies
Problem

You want to avoid hardcoding CORS policy information into the attributes and would like to use a more flexible
solution, allowing you to modify the CORS policies without having to recompile the whole application.

Solution

ASP.NET Web API allows you to create custom CORS policies, which you can then use instead of the
EnableCorsAttribute. To do that, you need to create a class derived from a standard .NET Attribute (so that it can
be applied as an attribute) and implement an ICorsPolicyProvider interface.

How It Works

In your implementation of ICorsPolicyProvider (interface shown in Listing 8-10), you may load the CORS settings,
such as allowed headers, origins, HTTP methods, from anywhere you wish, such as an XML configuration file or a data
store. You would then still apply the attribute the same way as EnableCorsAttribute would be applied, that is directly
on the controller/action or globally using the EnableCors extension method on the HttpConfiguration, but the settings
themselves are no longer hardcoded in the source code, but rather they are retrieved using the logic you defined.

243

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

Listing 8-10. Definition of an ICorsPolicyProvider Interface

public interface ICorsPolicyProvider

{
Task<System.Web.Cors.CorsPolicy> GetCorsPolicyAsync(HttpRequestMessage request,
CancellationToken cancellationToken);

ASP.NET Web API CORS implementation internally relies on a message handler to provide CORS policy settings.
That handler uses ICorsPolicyProviderFactory to gather information about the providers it should use to collect
CORS configuration information.

Out of the box, the default implementation of the ICorsPolicyProviderFactory is
AttributeBasedPolicyProviderFactory, which simply looks at attributes that decorate your controllers and
actions, or that are globally registered using the EnableCors extension method. Therefore, when you create a custom
ICorsPolicyProvider and mark it as an Attribute at the same time, it will be automatically picked up without having
to modify the ICorsPolicyProviderFactory.

On the other hand, by creating a custom ICorsPolicyProviderFactory you may break out of the established
approach of applying CORS rules via attributes and provide a completely different mechanism of matching individual
policy rules to actions.

CORS policy settings are represented in ASP.NET Web API by the CorsPolicy class (Listing 8-11), which is also
the return type from the GetCorsPolicyAsync method of the ICorsPolicyProvider interface.

Listing 8-11. Definition of CorsPolicy

public class CorsPolicy

{
public CorsPolicy();

public bool AllowAnyHeader { get; set; }
public bool AllowAnyMethod { get; set; }
public bool AllowAnyOrigin { get; set; }
public IList<string> ExposedHeaders { get; }
public IList<string> Headers { get; }

public IList<string> Methods { get; }

public IList<string> Origins { get; }

public long? PreflightMaxAge { get; set; }
public bool SupportsCredentials { get; set; }

public override string ToString();

The Code

In this example, you'll use the same sample application as in Recipe 8-2. You don’t need to read through that recipe;
just have a look at the server side (Listings 8-7 and 8-9) and client side (Listing 8-8) code. You'll modify it so that instead
of hardcoding the CORS settings inline in the attribute, you will now create a custom ICorsPolicyProvider, which will
read the relevant settings from the configuration file—App.config or Web.config depending on where you are hosting
your Web API. Listing 8-12 shows the CORS configuration structure that you'll set out to support in this recipe.

244

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

Listing 8-12. Configuration of CORS from app.config/web.config

<configuration>
<configSections>
<section name="cors" type="Apress.Recipes.WebApi.RemoteServer.CorsSection,
Apress.Recipes.WebApi.RemoteServer" />
</configSections>
<cors>
<corsPolicies>
<add name="setup1" origins="http://localhost:43641" headers="*" methods="get" />
</corsPolicies>
</cors>
</configuration>

In order to achieve this, let’s first add a reference to the System.Configuration assembly and declare all of
the necessary classes required for reading a custom configuration section. CorsSection will inherit from
System.Configuration.ConfigurationSection and will expose a collection of CORS policies. This is shown
in Listing 8-13.

Listing 8-13. Definition of CorsSection

public class CorsSection : ConfigurationSection

{
[ConfigurationProperty("corsPolicies", IsDefaultCollection = true)]
public CorskElementCollection CorsPolicies
{
get { return (CorsElementCollection)this["corsPolicies"]; }
set { this["corsPolicies"] = value; }
}
}

The CorsElementCollection (Listing 8-14), representing a list of individual CORS policy definitions, will inherit
from System.Configuration.ConfigurationElementCollection
Listing 8-14. Definition of CorsElementCollection

[ConfigurationCollection(typeof(CorsElement))]
public class CorsElementCollection : ConfigurationElementCollection

{
protected override ConfigurationElement CreateNewElement()
{
return new CorsElement();
}
protected override object GetElementKey(ConfigurationElement element)
{
return ((CorsElement)element).Name;
}
}

Finally, each policy will be represented by a CorsElement, inheriting from System.Configuration.
ConfigurationElement. This will allow you to configure headers, origins, and HTTP methods, as you'd do using the
EnableCorsAttribute and its primary constructor. To keep things simple, each of these settings will be represented by

245

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

a string, which you'll split at a semicolon to extract multiple values should you wish to provide them. Each policy will
also need to provide a unique name that will act as a unique key. CorsElement is shown in Listing 8-15.

Listing 8-15. Definition of CorsElement

public class CorsElement : ConfigurationElement

{
[ConfigurationProperty("name", IsKey = true, IsRequired = true)]
public string Name
{
get { return (string)this["name"]; }
set { this["name"] = value; }
}
[ConfigurationProperty("origins", IsRequired = true)]
public string Origins
{
get { return (string)this["origins"]; }
set { this["origins"] = value; }
}
[ConfigurationProperty("methods", IsRequired = true)]
public string Methods
{
get { return (string)this["methods"]; }
set { this["methods"] = value; }
}
[ConfigurationProperty("headers", IsRequired = false)]
public string Headers
{
get { return (string)this["headers"]; }
set { this["headers"] = value; }
}
}

From your custom ICorsPolicyProvider you should inspect these configuration settings and configure the Web
API CORS settings accordingly. This is done by creating an instance of the CorsPolicy class. The whole process is
shown in Listing 8-16. It can take place in the constructor of the attribute, and the CorsPolicy instance can be stored
in a private field.

Listing 8-16. Implementation of ICorsPolicyProvider Which Loads CORS Settings From a Configuration File

public class ConfigurableCorsPolicyAttribute : Attribute, ICorsPolicyProvider
{

private readonly CorsPolicy policy;
public ConfigurableCorsPolicyAttribute(string name)

{

_policy = new CorsPolicy();

246

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

var corsConfig = ConfigurationManager.GetSection("cors") as CorsSection;
if (corsConfig != null)

{
var policy = corsConfig.CorsPolicies.Cast<CorsElement>().FirstOrDefault(x =>
x.Name == name);
if (policy != null)
if (policy.Headers == "*")
_policy.AllowAnyHeader = true;
else
policy.Headers.Split(';"').ToList().ForEach(x => policy.Headers.Add(x));
if (policy.Methods == "*")
_policy.AllowAnyMethod = true;
else
policy.Methods.Split(';"').ToList().ForEach(x => policy.Methods.Add(x));
if (policy.Origins == "*")
_policy.AllowAnyOrigin = true;
else
policy.Origins.Split("';").ToList().ForEach(x => _policy.Origins.Add(x));
}
}
}
public Task<CorsPolicy> GetCorsPolicyAsync(HttpRequestMessage request, CancellationToken
cancellationToken)
{
return Task.FromResult(policy);
}

If the configuration contains a star for any of the settings, you should respect it by setting A1llowAnyHeader,
AllowAnyMethod, or AllowAnyOrigin to true.

Note that in this example the returned CorsPolicy is wrapped in a completed Task, and there is nothing wrong
with that, since your policy is immediately available. Should you need to read the settings from a remote server or
using I/0, it will come in handy to perform that operation in an asynchronous way.

You can now apply the newly created attribute to your actions and controllers, replacing the original
EnableCorsAttribute

[ConfigurableCorsPolicy("setup1™)]
public class BooksController : ApiController {}

8-4. Support Streaming and Push from ASP.NET Web API
Problem

You would like to be able to stream bytes of data from your ASP.NET Web API application, return the response as soon
as possible, and then continue to progressively write to the response stream which the client can consume.

247

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

Solution

ASP.NET Web API provides an implementation of Ht tpContent called PushStreamContent, which allows you
to synchronously or asynchronously write data to the response Stream. When using PushStreamContent, the
HttpResponseMessage is sent immediately and can be consumed by the user, while the Stream representing the body
of the response remains open and can be written to.

Listing 8-17 shows a sample usage of a PushStreamContent. Notice that the Web API action doesn’t need to be
async because it’s actually the lambda passed to PushStreamContent representing the operation on the Stream that’s
marked as async.

Listing 8-17. Sample Usage of a PushStreamContent from a Web API Action

var response = new HttpResponseMessage

{
Content = new PushStreamContent(async (respStream, content, context) =>
{
using (var writer = new StreamWriter(respStream))
{
//Read data from somewhere and write to response stream
await writer.WritelLineAsync(<some data>);
await writer.FlushAsync();
}
}, "text/plain")
};
How It Works

From your ASP.NET Web API action, you are able to return an HttpResponseMessage with the content set to an
instance of PushStreamContent. The definition of that HttpContent class is shown in Listing 8-18.

PushStreamContent takes a Func<Stream, HttpContent, TransportContext, Task> initsconstructor, which it
later invokes as soon as the output response Stream becomes available. In the provided lambda, you can progressively
read the source bytes from your storage (disk or database) and push them in chunks to the client by writing to the
currently available Stream.

As a consequence, the client receives the initial HTTP response almost immediately (though without the body yet)
and can then proceed to read the bytes of the body of the response as they are being written by the server.

PUSHSTREAMCONTENT AND WEB API 1

In version one of ASP.NET Web API, the PushStreamContent used Action<Stream, HttpContent,
TransportContext> instead of a Func<Stream, HttpContent, TransportContext, Task>, which effectively
meant any exceptions were impossible to be caught. This could potentially lead to even an AppDomain crash.

If you have an old version of APl using PushStreamContent, it's strongly recommended to update to at least ASP.
NET Web API 2. The original Action<Stream, HttpContent, TransportContext>-based constructors have not
been removed in order to avoid breaking changes but they shouldn't be used anymore.

248

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

Overall, such an approach allows both of the involved sides to minimize the amount of memory used, as neither
side is forced into buffering the entire representation of a resource in question. This is especially useful in transferring
large blobs of data over HTTP. It is also up to you as the developer to decide whether you will write to the Streamin a
synchronous or asynchronous manner, which will obviously have a consequence if the thread is being blocked or not.
Finally, the Web API framework automatically applies Transfer-Encoding: chunked to your response whenever you
use PushStreamContent.

Listing 8-18. Definition of PushStreamContent

public class PushStreamContent : HttpContent
{
public PushStreamContent(Action<Stream, HttpContent, TransportContext> onStreamAvailable);
public PushStreamContent(Func<Stream, HttpContent, TransportContext, Task> onStreamAvailable);
public PushStreamContent(Action<Stream, HttpContent, TransportContext> onStreamAvailable,
MediaTypeHeaderValue mediaType);
public PushStreamContent(Action<Stream, HttpContent, TransportContext> onStreamAvailable,
string mediaType);
public PushStreamContent(Func<Stream, HttpContent, TransportContext, Task> onStreamAvailable,
MediaTypeHeaderValue mediaType);
public PushStreamContent(Func<Stream, HttpContent, TransportContext, Task> onStreamAvailable,
string mediaType);

[DebuggerStepThrough]
protected override Task SerializeToStreamAsync(Stream stream, TransportContext context);
protected override bool TryComputelLength(out long length);

The Code

Listing 8-19 shows an example of streaming some text from the server using PushStreamContent. After each word is
written to the response Stream, the program waits for 250ms.

Listing 8-19. Example of Streaming Some Text at Regular Intervals

public class StreamController : ApiController

{
private const string Lipsum =
"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi ut urna eget est lacinia pulvinar. ";

[Route("stream")]
public HttpResponseMessage Get()

{
var resp = new HttpResponseMessage
{
Content = new PushStreamContent(async (respStream, content, context) =>
{
try
{

var wordsToSend = Lipsum.Split(' ');

249

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

using (var writer = new StreamWriter(respStream))

foreach (var word in wordsToSend)

{
await writer.WritelineAsync(word);
await writer.FlushAsync();
await Task.Delay(millisecondsDelay: 250);
}
}
}
catch (Exception ex)
{
return;
}
finally
{
respStream.Close();

}, "text/plain")
};

return resp;

In order to consume such a streamed response, the key is to not wait for the entire body to arrive, but to start
the processing of the response as soon as the response headers become available. On the .NET side,
HttpClient allows this through the use of HttpCompletionOption.ResponseHeadersRead (the default mode is
HttpCompletionOption.ResponseContentRead).

Then, using a StreamReader, you can progressively read the contents of the body until you reach the
EndOfStream. Listing 8-20 shows an example of doing just that.

Listing 8-20. Reading a Streamed Response with HttpClient

var client = new HttpClient();

var request = new HttpRequestMessage(HttpMethod.Get, "http://localhost:9000/stream");
var response = await client.SendAsync(request, HttpCompletionOption.ResponseHeadersRead);
var body = await response.Content.ReadAsStreamAsync();

using (var reader = new StreamReader(body))

while (!reader.EndOfStream)
{

}

Console.WriteLine(reader.ReadlLine());

Using the same principle, you could potentially stream large files or blobs of data such as music files or video files
directly to the browser, which will then progressively read them over HTTP. If the relevant format supports streaming,
for example MP4, your user could enjoy the playback immediately.

250

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

8-5. Support Server-Sent Events in ASP.NET Web API
Problem

You want to add support for server-sent events (JavaScript EventSource) in your Web API service.

Solution

While there is no out-of-the-box, plug-and-play solution, PushStreamContent, discussed in Recipe 8-4, makes it
really easy to create a Web API-specific EventSource implementation, which can be used by your client applications.
According to the specification of EventSource, the server should send messages with the text/event-stream media
type, which can then be handled by the client.

The process ought to be a two-step one.

1. The client registers an event source (the initial handshake process between the client and
the server), which in Web API would be the equivalent of creating a new, client-specific,
instance of PushStreamContent on the server side.

2. The client then listens to the incoming events/messages from the event source, which the
server sends by writing data to the response Stream.

How It Works

Server-sent events were first proposed back in 2006 and initially implemented by the Opera browser. Since then, they
have been defined formally in the W3C Candidate Recommendation.

(...) specification defines an API for opening an HTTP connection for receiving push notifications
from a server in the form of DOM events. The API is designed such that it can be extended to work
with other push notification schemes such as Push SMS.

Server-Sent Events W3C
Candidate Recommendation
www.w3.0rg/TR/eventsource/

The specification introduces an EventSource interface which is used to receive server-sent events. A client
establishes an HTTP connection with the server (server responds in the text/event-stream format), and keeps
it open, waiting for the server to send events. Server-sent events are supported in all modern browsers except
Internet Explorer.

The message format is very minimalistic; it could be data-only or data with some custom event.

data: {info: "hello world"}

event: scoreUpdate
data: {"score": 127, "date": "2014-03-14"}

The nature of Web API PushStreamContent and its ability to keep the connection open and write to the response
stream at any time fits perfectly into the requirements for server-sent events.

Note The ASP.NET SignalR communication framework uses server-sent events as a fallback mechanism (in case
web sockets are not available and the browser has SSE support) to provide real-time client-server messaging in a similar
fashion as discussed in this recipe.

251

http://www.w3.org/TR/eventsource/

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

The Code

To best understand the process of implementing support for server-sent events, let’s write a simple ASPNET Web API
chat application powered by them. The controller is shown in Listing 8-21.

Listing 8-21. ChatController Allowing a Client to Register EventSource

public class ChatController : ApiController

{

private static object locker = new object();
private static readonly List<StreamWriter> Subscribers = new List<StreamWriter>();

public HttpResponseMessage Get(HttpRequestMessage request)

{
var response = new HttpResponseMessage
{
Content = new PushStreamContent(async (respStream, content, context) =>
{
var subscriber = new StreamWriter(respStream)
{
AutoFlush = true
};
lock (locker)
Subscribers.Add(subscriber);
}
await subscriber.WritelineAsync("data: \n");
}, "text/event-stream")
};
return response;
}

First, you have to allow the chat clients to perform the handshake with the server, registering themselves against

the Web API event source. This is done by creating and returning a new instance of a PushStreamContent for each
client, with the text/event-stream media type. As part of that response, the initial event sent is an empty event.

The list of connected clients is represented by a list of StreamWriter objects, created as soon as the connection

with the client is established, using each client’s response Stream.

The next step is to allow the client to POST chat messages. Once a client posts a message, it should then be propagated

to each of the connected clients using the Subscribers list you maintain. All of that is shown in Listing 8-22.

Listing 8-22. Posting a Message to the Chat and Pushing It to All of the Connected Clients

public async Task Post(Message m)

{

252

m.DateTime = DateTime.Now;
await MessageCallback(m);

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

private static async Task MessageCallback(Message m)

{
for (var i = Subscribers.Count - 1; i »>=0; i--)
{
try
{
await Subscribers[i].WriteLineAsync("data:" + JsonConvert.SerializeObject(m) + "\n");
await Subscribers[i].WriteLineAsync("");
await Subscribers[i].FlushAsync();
}
catch (Exception)
lock (locker)
{
Subscribers.RemoveAt(i);
}
}
}
}

//message model

public class Message

{
public string Username { get; set; }
public string Text { get; set; }
public DateTime DateTime { get; set; }

}

If you encounter an exception when trying to write to the client’s response Stream, you have to remove this
particular StreamWriter from the list, as it means the client has disconnected. Because of that, using a typical foreach
loop is not possible, as the collection could be modified while it is being iterated through. To work around that, you
can use a regular for loop and iterate backwards instead.

To see this in action, you need to add a client application; in this case you will use an HTML/JavaScript one,
with some Knockout.js sprinkled in to facilitate two-way bindings. Some basic HTML containing a placeholder
for displaying the messages, textboxes for a username and the message, and a button are shown in Listing 8-23.
Individual incoming chat messages are represented by a Knockout.js template, which will be used to inject them into
the DOM as they are pushed by the server.

Listing 8-23. HTML for the Chat Application

<div class="row">
<div class="col-md-4">
<dl id="console" data-bind="template: {name: 'chatMessageTemplate',
foreach: chatMessages }"></dl>
</div>
</div>
<div class="row">
<div class="col-md-4">
<input type="text" class="form-control" placeholder="Username" data-bind="value: chatUsername">
</div>
</div>

253

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

<div class="row">
<div class="col-md-4">
<textarea class="form-control" rows="3" data-bind="value: newMessage.text"></textarea>
<button type="button" class="btn btn-primary" data-bind="click: send, enable:
enabled()">Send</button>
</div>
</div>

<script type="text/html" id="chatMessageTemplate">
<dt>
</dt>
<dd><em data-bind="text: Text"></dd>
</script>

The JavaScript view model, shown in Listing 8-24, is responsible for sending the chat messages.

Listing 8-24. Knockout View Model for Handling Basic Chat Operations
var ChatApp = ChatApp || {};

ChatApp.Model = function () {
var self = this;
self.chatMessages = ko.observableArray([]);
self.chatUsername = ko.observable("");
self.connected = ko.observable(false);
self.enabled = ko.computed(function() {
return self.connected() 8& self.chatUsername().length > 0;
D;

self.newMessage = {
username: ko.computed(function () {
return self.chatUsername();
1>

text: ko.observable("")

};

self.send = function () {
$.ajax({
url: "http://localhost:1300/api/chat/",
data: JSON.stringify({
username: self.newMessage.username(),
text: self.newMessage.text()
1>
cache: false,
type: 'POST',
dataType: "json",
contentType: 'application/json; charset=utf-8'
}).success(function () {
self.newMessage.text("");
1
b
b

254

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

Finally, let’s add the relevant EventSource code. A new EventSource will be registered on page load by
making a GET request to the HTTP endpoint you previously created in your Web API, which will create a new
PushStreamContent for you. You need to add the following event listeners to the EventSource object:

e ‘“message” event indicates an incoming server sent message.
e ‘“open”is raised when the connection is successfully established.
e “close” is raised when the server explicitly closes the connection.

In Listing 8-25, you only use the default events; however, the SSE specification allows that the server can define
customs ones too. Messages pushed from your Web API controller will be available in the data property of the event
arguments. You can check for the browser support for EventSource by inspecting window. EventSource property.

Listing 8-25. Registering an EventSource and Relevant Event Listeners

$(document).ready(function () {
var viewModel = new ChatApp.Model();
ko.applyBindings(viewModel);

if (window.EventSource) {
var source = new EventSource('http://localhost:1300/api/chat/");
source.addEventListener('message', function (e) {
if (e.data != "") {
var json = JSON.parse(e.data);
viewModel.chatMessages.push(json);

}
}, false);

source.addEventListener('open', function (e) {
console.log("open!");
viewModel. connected(true);

}, false);

source.addEventListener('error', function (e) {
if (e.readyState == EventSource.CLOSED) {
console.log("error!");
}

}, false);
}
1

8-6. Integrate ASP.NET SignalR into ASP.NET Web API controllers
Problem

You'd like to integrate the popular real-time communication framework ASP.NET SignalR into your Web API
controllers in order to notify connected clients about operations performed against your Web API resources. For
example, creation of a new resource or an update to an existing one could trigger a real-time message to be sent over
to the client using the SignalR infrastructure.

255

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

Solution

ASP.NET SignalR (Microsoft.AspNet.SignalR on NuGet) is very easy to integrate into Web API, and a very

common technique to achieve this was first suggested by Brad Wilson. In this approach, you obtain an IHubContext,
representing a relevant Hub, through SignalR’s GlobalHost (its service locator) from inside of your controller and use it
to push the relevant info to the clients. IHubContext should be a Lazy<T> since there is no need to take the penalty of
resolving it on every request. This is shown in Listing 8-26.

Listing 8-26. Simple Way to Obtain IHubContext from the ApiController

[HubName ("books")]
public class BooksHub : Hub

{}
public class BooksController : ApiController
{
//use the hub to push message to clients
private readonly Lazy<IHubContext> booksHub = new Lazy<IHubContext>(() =>
GlobalHost.ConnectionManager.GetHubContext<BooksHub>());
//rest of the controller omitted for brevity
}

A variation of this approach, and a slightly more elegant implementation as it lends itself well to unit testing, is
to wrap the THubContext in a container class and inject it through the constructor instead. You'll look at that in more
detail in the code section of this recipe.

How It Works

While it is outside of the scope of this book to go into detail on the inner workings of ASP.NET SignalR, let’s briefly look
at some of the components used in this recipe. IHubContext (Listing 8-27) provides access to hub information from
outside of that hub. This is very useful in your scenario, but as a consequence, since IHubContext is resolved globally,
there is no client connection information.

Listing 8-27. Definition of IHubContext

public interface IHubContext

{
IHubConnectionContext Clients { get; }
IGroupManager Groups { get; }

In other words, since IHubContext is used from outside the hub, IHubConnectionContext will not give you access
to properties such as Clients.Caller or Clients.Others, which you might have been used to when calling Context
property from within the hub, because there’s no individual connection ID associated with the THubContext. If you
wish to work with the connection ID in this setup, you need to pass it down from the client.

IHubConnectionContext, shown in Listing 8-28, exposes a number of proxy objects, allowing you to invoke
methods on the client. Since the proxies are dynamic, you are free to call any method that you wish; it will have to
match one existing on your client. Each of the objects passed to those methods will be serialized to JSON using
JSON.NET.

256

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

Listing 8-28. Definition of IHubConnectionContext

public interface IHubConnectionContext
{

[Dynamic]

dynamic All { get; }

dynamic AllExcept(params string[] excludeConnectionlds);

dynamic Client(string connectionld);

dynamic Clients(IList<string> connectionIds);

dynamic Group(string groupName, params string[] excludeConnectionIds);

dynamic Groups(IList<string> groupNames, params string[] excludeConnectionIds);
dynamic User(string userId);

An important note is that ASP.NET SignalR is entirely OWIN-based right now; therefore, after installing it from
NuGet you will need to add an OWIN Startup class to wire it in. A Project Katana example is shown in Listing 8-29.

Listing 8-29. OWIN Startup Class for SignalR

public class Startup

{
public void Configuration(IAppBuilder app)
{
app.-MapSignalR();
}
The Code

For your sample, you’ll use a small book-listing application consisting of a Web API BooksController, a Book model,
and an HTML/JavaScript client. Whenever a user creates a new entry in your books list, you'll push this as an update
to all of the other users that are currently also looking at the list of books.

The model and the controller supporting just that is shown in Listing 8-30. You take advantage of the Lazy<T>
resolution of the IHubContext that you are interested in and use it whenever a new book is created on the server in
order to notify the clients about this event, by invoking the bookAdded function on the client side.

Listing 8-30. Book Model and BooksController with a Lazy<IHubContext>

public class Book

{
public int Id { get; set; }
public string Author { get; set; }
public string Title { get; set; }
}

public class BooksController : ApiController

{
private readonly Lazy<IHubContexts> _booksHub = new Lazy<IHubContexts(() =>
GlobalHost.ConnectionManager . GetHubContext<BooksHub>());

257

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

private static List<Book> _books = new List<Book>

{
new Book {Id = 1, Author = "John Robb", Title = "Punk Rock: An Oral History"},
new Book {Id = 2, Author = "Daniel Mohl", Title = "Building Web, Cloud, and Mobile
Solutions with F#"},
new Book {Id = 3, Author = "Steve Clarke", Title = "100 Things Blue Jays Fans Should
Know & Do Before They Die"}
};

[Route("books")]
public IEnumerable<Book> GetAll()

{
}

[Route("books/{id:int}", Name = "GetBookById")]
public Book GetById(int id)

{
}

[Route("books")]
public IHttpActionResult Post(Book book)

return _books;

return books.FirstOrDefault(x => x.Id == id);

{
book.Id = books.Last() != null ? books.Last().Id + 1 : 1;
_books.Add(book);
_booksHub.Value.Clients.All.bookAdded(book);
return CreatedAtRoute("GetBookById", new { id = book.Id }, book);
}

Sticking to this approach, you could rewrite it into a more generic approach using the abstract base class
ApiControllerWithHub<T>, which will expose the relevant IHubContext automatically. In this case, the modifications
to the controller are very small; you just need to change the inheritance and the way you call the hub. As a bonus,
you get a reusable structure, which you can utilize across different controllers with different hubs. The code is shown
in Listing 8-31.

Listing 8-31. Base Class Facilitating Obtaining IHubContext from the ApiController in a Generic Way

public abstract class ApiControllerWithHub<T> : ApiController
where T : IHub

{
readonly Lazy<IHubContext> _hub = new Lazy<IHubContext>(
() => GlobalHost.ConnectionManager.GetHubContext<THub>()
)s
protected IHubContext Hub
{
get { return _hub.Value; }
}
}

258

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

//rewritten controller declaration
public class BooksController : ApiControllerWithHub<BooksHub>

// BooksHub is now available through the Hub property on the base class
Hub.Clients.All.bookAdded(book);

The only caveat to this approach is that it is not very unit testable, and mocking the code responsible for resolving
the THubContext is virtually impossible at the moment. One way to solve this is to expose a setter on the Hub property
on the base class (or on the _booksHub field from the earlier example), and then remember to always set it in the unit
tests. But a more elegant approach is to do it properly with constructor injection.

To achieve that, let’s create a BooksBroadcaster class, which will wrap your real-time functionality in a mockable
interface (IBooksBroadcaster). This way you can utilize inversion of control principles to inject this functionality
into your controller. This plays well into the single responsibility principle too, as the overall business logic remains
the same, but the responsibility for notifying the connected clients about a specific event has been shifted from the
controller into a separate, focused class. The relevant code is shown in Listing 8-32.

Listing 8-32. Injecting IHubContext Wrapped in a Container Class to Facilitate Unit Testing and to Provide Better
Logic Separation

public class BooksBroadcaster : IBooksBroadcaster

{
private readonly IHubContext _booksHubContext;
public BooksBroadcaster(IHubContext booksHubContext)
{
_booksHubContext = booksHubContext;
}
public void BookAdded(Book book)
{
_booksHubContext.Clients.All.bookAdded(book);
}
}
public interface IBooksBroadcaster
{
void BookAdded(Book book);
}
public class BooksController : ApiController
{
//use the wrapper class (interface) to push message to clients
//in tests just inject a mock
private readonly Lazy<BooksBroadcaster> _booksBrodacaster;
public BooksController(Lazy<BooksBroadcaster> booksBrodacaster)
{
_booksBrodacaster = booksBrodacaster;
}
//rest of the controller omitted for brevity
}

259

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

To facilitate the dependency injection into your Web API controllers, you are obviously free to use an IoC engine
of your choice, but in this example (Listing 8-33) you’ll use Autofac and its Autofac.WebApi2 NuGet package. Autofac
allows you to bind to the methods, so you can bind the IHubContext relevant for the BooksBrodcaster to BooksHub
that is being resolved from the service locator. You'll then set the Autofac container as the dependency resolution
engine for your Web API, and that will automatically take care of the rest.

Listing 8-33. Registering IBooksBroadcaster in Web API DI Using Autofac

var builder = new ContainerBuilder();
builder.Register(
¢ => new Lazy<IBooksBroadcaster>(() => new BooksBroadcaster(GlobalHost.ConnectionManager.
GetHubContext<BooksHub>())))
.As<Lazy<IBooksBroadcaster>>();
builder.RegisterApiControllers(Assembly.GetExecutingAssembly());

var container = builder.Build();
httpConfiguration.DependencyResolver = new AutofacWebApiDependencyResolver(container);

Note Chapter 10 is dedicated entirely to dependency injection in ASP.NET Web API, so you'll skip all of the DI
details here.

With the DI wired up, you can now rewrite the controller into a very clean structure, as shown in Listing 8-34.
The irrelevant parts have been omitted for brevity but the code is almost identical as before.

Listing 8-34. The Modified BooksController, Using IBooksBroadcaster

public class BooksController : ApiController

{
private readonly Lazy<IBooksBroadcaster» _booksBrodacaster;
public BooksController(Lazy<IBooksBroadcaster> booksBrodacaster)
{
_booksBrodacaster = booksBrodacaster;
}
[Route("books")]
public IHttpActionResult Post(Book book)
{
book.Id = books.Last() != null ? books.Last().Id + 1 : 1;
_books.Add(book) ;
_booksBrodacaster.Value.BookAdded(book) ;
return CreatedAtRoute("GetBookById", new { id = book.Id }, book);
}
}

260

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

And this is everything regarding the server side infrastructure. You can now proceed to extend the client side with
real-time functionality. Recall that in all of the above examples, you were calling a bookAdded function on the client,
so obviously you'll need to add it.

To enable SignalR functionality in your HTML/JS, you need to first add the appropriate JavaScript references.

<script src="~/Scripts/jquery.signalR-2.0.2.min.js"></script>
<script src="~/signalr/hubs"></script>

All the client code is shown in Listing 8-35. It provides basic capabilities of loading all books from the server and
adding a new book to the book repository. The SignalR-specific bits are highlighted in bold.

Listing 8-35. Client-side Code Required to Integrate SignalR into Your Books Example

<script src="~/Scripts/jquery.signalR-2.0.2.min.js"></script>
<script src="~/signalr/hubs"></script>

<script type="text/javascript">
$(document).ready(function () {
var vm = new Apress.Books();
var hub = $.connection.books;

hub.client.bookAdded = function (book) {
vm.addBook(book) ;
};

$.connection.hub.start();

ko.applyBindings(vm);
vm.loadBooks();
D;

var Apress = Apress || {};
Apress.Books = function() {
var self = this;

self.books = ko.observableArray([]);

self.newBook = {
Title: ko.observable(""),
Author: ko.observable("")

};

self.addBook = function (book) {
var existingBook = ko.utils.arrayFirst(this.books(), function (item) {
return item.Id == book.Id;

Ds

if (!existingBook) {
self.books.push(book);

}

261

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

self.loadBooks = function() {
$.ajax("http://localhost:35366/books")
.done(function(data) {
$.each(data, function(idx, item) {
self.books.push(item);

1
)

.fail(function(xhr, status, error) {
alert(status);
D;

};

self.sendBook = function() {
$.ajax("http://localhost:35366/books", {
type: "POST",
contentType: "application/json",
dataType: 'json',
data: JSON.stringify({ Title: self.newBook.Title(), Author: self.newBook.Author() })
1
.done(function(data) {
self.books.push(data);

3]
.fail(function(xhr, status, error) {
alert(status);
1
b
b
</script>

<div class="container">
<ul data-bind="foreach: books, visible: books().length > 0">
<1li>
<h3 data-bind="text: Title"></h3>
<small data-bind="text: Author"></small>
</1i>

<div class="input-group">
<input type="text" class="form-control" placeholder="Title" data-bind="value: newBook.Title" />
<input type="text" class="form-control" placeholder="Author" data-bind="value:
newBook.Author" />
<button type="button" class="btn btn-default" data-bind="click: sendBook">Send</button>
</div>
</div>

The connection to the hub is established from within the document.ready method. Hubs are referenced by
their name, through the $.connection object. Recall that you defined the name “books” on your hub using the
HubNameAttribute; that's why the JS property is also called books. The client-side function that is being called from
the server, bookAdded, has also been added onto the client-side hub object. It invokes a function that exists inside of
your view model, which will take care of adding the received Book to the view model’s observableArray and updating
the UL The rest of the client code is just some HTML and Knockout.js sprinkled on top to provide two-way bindings.

262

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

ASPNET SIGNALR + ASPNET WEB API - OWIN AND SELF-HOST

The example shown in this recipe uses the Microsoft.AspNet.SignalR package which supports ASP.NET only.
If you use self-host, you cannot easily combine your Web API with SignalR anymore, since classic Web API
self-host (WCF based) requires exclusivity on the port it listens to, and no other listener is allowed anymore.

On the other hand, if you use Web APl OWIN host (Microsoft.AspNet.WebApi.OwinSelfHost), all of the
principles from this recipe still apply; the only difference is the OWIN Startup class and the SignalR package to
use: Microsoft.AspNet.SignalR.Owin.

public class Startup

{
public void Configuration(IAppBuilder app)
{
var config = new HttpConfiguration();
//configure Web API as you wish
app.UseWebApi(config);
app.MapSignalR();
}
}

8-7. Use WebSockets with ASP.NET Webh API
Problem

You are building a web application directly with web sockets and would like to integrate ASP.NET Web API with them.

Solution

Socket programming, as a full-duplex communication channel, is a lower-level task than doing regular HTTP work
because it requires dropping down to the TCP layer. Fortunately, using the Microsoft.WebSockets package from
NuGet makes it very easy to get started. The package ships with a couple of higher-level socket abstractions, which
make working with web sockets in ASP.NET a real pleasure.

Install-package Microsoft.WebSockets

A simple example of opening up sockets from a Web API controller is shown in Listing 8-36. Notice the status
code issued by your Web API action is HttpStatusCode.SwitchingProtocols, HTTP 101.

Listing 8-36. A Web API Action Opening Up a Socket Connection Using a Custom WebSocketHandler

public HttpResponseMessage Get()

{
var httpcontext = Request.Properties["MS HttpContext"] as HttpContextBase;
if (httpcontext == null) return new HttpResponseMessage(HttpStatusCode.InternalServerError);

263

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

httpcontext.AcceptWebSocketRequest(new MyWebSocketHandler());
return Request.CreateResponse(HttpStatusCode.SwitchingProtocols);

}
public class MyWebSocketHandler : WebSocketHandler
{
//handle sockets events such as Message, Open, Close, Error
}

This recipe is based on a blog post from Youssef Moussaoui (http://blogs.msdn.com/b/youssefm/
archive/2012/07/17/building-real-time-web-apps-with-asp-net-webapi-and-websockets.aspx) who, at the
time of writing it, was a member of the Web API team.

Caution Microsoft.WebSockets requires WebSocket Protocol to be installed in your lIS (Control Panel » Programs
» Turn Windows features on or off » Internet Information Services » World Wide Web Services » Application
Development Features » WebSocket Protocol).

How It Works

Even though at first glance web sockets and Web API don’t really overlap, you may still have plenty of scenarios
where you'd like to integrate sockets with your Web API. A common use case is to perform the initial sockets
handshake between the client and the server by going through the Web API pipeline and then responding with a 101
HTTP status code indicating the switch of protocols, at that point letting sockets take over. This allows you to pick up
things such as user information and authorization permissions using Web API, and only dispatch to web sockets if
the expected prerequisites are met.

Additionally, you may want to enable your HTTP endpoints to call into sockets to push some information to the
clients as soon as it’s submitted to your Web APIL The notion here is similar to the integration of ASP.NET SignalR
shown in Recipe 8-6. This opens up a lot of exciting scenarios; for example, you may imagine a shop order REST API
that notifies an admin interface in real-time over sockets about each incoming order.

Microsoft.WebSockets supports working with sockets in ASP.NET applications; therefore it will only work with
your web-hosted Web API. If you are using a different host, you will have to support sockets differently. For example,
the Katana project provides a sample of how to build OWIN sockets middleware at:

http://msdn.microsoft.com/en-us/library/system.net.websockets.websocket(v=vs.110).aspx

As an additional prerequisite for the Microsoft.WebSockets package, you will have to add the following entry
into the web. config. It will, among other things, ensure that the HttpContext.Current is propagated correctly onto
the new threads.

<appSettings>
<add key="aspnet:UseTaskFriendlySynchronizationContext" value="true" />
</appSettings>

Once installed, to open up a sockets connection on the server side, you have to call the AcceptiWebSocketRequest

extension method of the current HttpContext, and pass in a relevant WebSocketHandler. This handler will be
responsible for maintaining and facilitating the actual duplex communication between you and the client. Each client

264

http://blogs.msdn.com/b/youssefm/archive/2012/07/17/building-real-time-web-apps-with-asp-net-webapi-and-websockets.aspx
http://blogs.msdn.com/b/youssefm/archive/2012/07/17/building-real-time-web-apps-with-asp-net-webapi-and-websockets.aspx
http://msdn.microsoft.com/en-us/library/system.net.websockets.websocket(v=vs.110).aspx

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

is supposed to obtain its own instance of the WebSocketHandler on the server, while the collection of all connected
clients is normally shared between all of the instances so that a message from one of them can be broadcasted by the
server to the others.

The Code

To see this in action, let’s build a small chat application similar to the one you created in Recipe 8-5 where you explore
integration of server-sent events into ASP.NET Web API.

The initial handshake will be performed over Web API. In this case, you'll create an instance of a JS WebSocket
object on the client side, and use the Web API endpoint as the constructor parameter; this will be the URL to which
the WebSocket server responds.

Let’s start your coding by adding a WebSocketHandler (Listing 8-37) responsible for handling socket operations.
Each connecting client will have to go over Web API where it will register a username. From there, an instance of a
ChatWebSocketHandler will be attached to a dedicated HttpContext.

Listing 8-37. ChatHandler and a Web API Controller Responsible for the Handshake and Protocol Switch
public class ChatHandler : WebSocketHandler

{
private static readonly object Locker = new object();
public static WebSocketCollection ChatClients = new WebSocketCollection();
private readonly string _username;
public ChatHandler(string username)
{
_username = username;
}
public override void OnOpen()
{
lock (Locker)
ChatClients.Add(this);
}
public override void OnMessage(string message)
{
var msg = JsonConvert.DeserializeObject<Message>(message);
msg.DateTime = DateTime.Now;
msg.Username = _username;
ChatClients.Broadcast(JsonConvert.SerializeObject(msg));
}
public override void OnClose()
{
lock (Locker)
ChatClients.Remove(this);
}
}

265

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

[Route("chat")]
public class ChatController : ApiController

{
public HttpResponseMessage Get(string username)
{
var httpcontext = Request.Properties["MS HttpContext"] as HttpContextBase;
if (httpcontext == null) return new HttpResponseMessage(HttpStatusCode.InternalServerError);
httpcontext.AcceptilebSocketRequest(new ChatHandler(username));
return Request.CreateResponse(HttpStatusCode.SwitchingProtocols);
}
}

Your ChatHandler maintains a public list of clients representing each of the users currently connected to the
chat using WebSocketCollection, which is an extension of ICollection<WebSocketHandler>. Each message from
the client will be sent in a JSON string format; therefore you need to deserialize it before it’s usable. You then inject
a timestamp and a username into the message and broadcast it to all the other clients. Remember, when the user
sends a message over sockets, it’s a dedicated handler on the server side that will handle it, therefore the private field
holding the username will be relevant for this given user.

The big advantage of using a public collection of all of the clients is that you can now access and interact with it
from outside of the handler. For example, you could expose a regular Web API HTTP endpoint allowing for messages
to be POST-ed to your Web API and have them broadcasted into the chat to all of the clients. The following is an
example of such an action added to the ChatController:

public void Post(Message msg)
{

}

ChatHandler.ChatClients.Broadcast(JsonConvert.SerializeObject(msg));

This is all of the setup required on the server side. What is needed next is the HTML/JS that will act as the Ul
for the chat application. The code is shown in Listings 8-38 (HTML) and 8-39 (JavaScript). The key elements are
highlighted in bold and discussed afterwards.

Listing 8-38. HTML Required for the Sockets Chat Application

<div class="row">
<div class="col-md-4">
<dl id="console" data-bind="template: {name: 'chatMessageTemplate', foreach: chatMessages }">
</dl>
</div>
</div>
<div class="row">
<div class="col-md-4">
<input type="text" class="form-control" placeholder="Username" data-bind="value:
chatUsername, enable: !connected()">
</div>
</div>
<div class="row">
<div class="col-md-4">
<textarea class="form-control" rows="3" data-bind="value: newMessage.text,
enable: connected()"></textarea>

266

CHAPTER 8 = CROSS DOMAIN AND PUSH COMMUNICATION

<button type="button" class="btn btn-primary" data-bind="click: send, enable:
enabled()">Send</button>
<button type="button" class="btn btn-primary" data-bind="click: connect,
visible: !connected(), enable: chatUsername().length"sConnect</buttons
</div>
</div>

<script type="text/html" id="chatMessageTemplate">
<dt> </dt>
<dd><em data-bind="text: Text"></dd>

</script>

Listing 8-39. JavaScript for the Sockets Chat Application

<script type="text/javascript">
var ChatApp = ChatApp || {};

ChatApp.Model = function() {

var self = this;

var socket;

self.chatMessages = ko.observableArray([]);
self.chatUsername = ko.observable("");

self.connected = ko.observable(false);
self.enabled = ko.computed(function() {
return self.connected() 8& self.chatUsername().length > 0;

};

self.newMessage = {
text: ko.observable("")
b

self.connect = function() {
var uri = "ws://localhost:4214/chat/" + self.chatUsername();
socket = new llebSocket(uri);

socket.onopen = function() {
self.connected(true);
b

socket.onerror = function(event) {
console.log("erxor! ");
console.log(event);

b
socket.onmessage = function (event) {

var parsed = JSON.parse(event.data);
self.chatMessages.push(parsed);

267

CHAPTER 8 © CROSS DOMAIN AND PUSH COMMUNICATION

self.send = function() {

var data = JSON.stringify({
text: self.newMessage.text()

D3
socket.send(data);
self.newMessage.text("");

};

};

$(document) .ready(function() {
var viewModel = new ChatApp.Model();
ko.applyBindings(viewModel);

1;

</script>

The WebSocket object instance exposes all the necessary events to handle duplex communication: onopen,
onerror, and onmessage. The sending of messages happens via the send function exposed by WebSocket.

The “connect” button triggers the initial socket handshake and becomes available (through a Knockout binding)
as soon as the user provides a username. Since a username is now maintained on the server, you use JavaScript to
disable the username textbox as soon as the user connects to your chat.

As soon as the message is received from the server (inside of the onmessage event), you can parse the incoming
JSON and push the message into the chatMessages observable array, which will then rely on Knockout to update the
user interface and keep the chat window visually in sync with what's arrived from the server.

268

CHAPTER 9

Dependency Injection

This chapter covers dealing with dependency injection in Web API services. You will learn how to do the following:

e Inject dependencies into Web API controllers, filters, message handlers, and formatters
(Recipe 9-1 and 9-4)

e Add support for the common DI containers (Recipe 9-2)
e Deal with per-request dependency scope (Recipe 9-3)

e Write a custom dependency resolver for ASP.NET Web API applications (Recipe 9-5)

9-1. Inject Dependencies into ASP.NET Web API Controllers
Problem

You would like to inject, through the constructor, dependencies into your ASP.NET Web API controllers.

Solution

ASP.NET Web API provides two primary mechanisms for dealing with controller dependency injection: implementing
a custom IHttpControllerActivator and implementing a custom IDependencyResolver.

Since both of them can act as a bridge between the framework and your IoC container, in order to be able to
inject dependencies into your controllers, you can go ahead and register an implementation of either of them, but be
aware that both have strengths and weaknesses.

How It Works

IHttpControllerActivator, shown in Listing 9-1, can be thought of as a de facto composition root for the Web API
controllers. The framework uses it to create controllers, and each controller is created on every request. On the other
hand, a controller descriptor (a “pointer” to a controller for a given set of route values) is cached.

What's extremely valuable is that IHttpControllerActivator implementations also have access to the current
HttpRequestMessage, and its context can be used to define dependencies. Unfortunately, this mechanism can only be
used to inject controller dependencies; all other Web API pipeline members have to be treated separately.

269

CHAPTER 9 © DEPENDENCY INJECTION

Listing 9-1. Definition of the IHttpControllerActivator

public interface IHttpControllerActivator
{

IHttpController Create(HttpRequestMessage request, HttpControllerDescriptor
controllerDescriptor, Type controllerType);

}

IDependencyResolver, which can be seen in Listing 9-2, on the other hand, is practically a service
locator pattern which Web API uses to initialize controllers in case no custom IHttpControllerActivator is
registered. This approach is very similar to how dependency resolution is done in ASPNET MVC. Unfortunately,
IDependencyResolver is completely context-less (since Web API doesn’t use static objects like HttpContext.Current
to provide contextual information), and because of that it has somewhat limited capacity, for example for creating
per-request dependencies. It does provide a scope (BeginScope), which is even cached and reused by the framework
for the duration of the request lifecycle (see Recipe 9-3) but respecting the scope is the responsibility of the adapter
between IDependencyResolver and a DI container, rather than being handled by ASP.NET Web API automatically.

Listing 9-2. Definition of the IDependencyResolver

public interface IDependencyResolver : IDependencyScope, IDisposable

{
}

IDependencyScope BeginScope();

The IDependencyScope (Listing 9-3) interface defines two methods:
e GetService: Used to fetch an instance of a specific Type.

e GetServices: Used to fetch a collection of objects of a specific Type.

Listing 9-3. Definition of the IDependencyScope

public interface IDependencyScope : IDisposable

{

object GetService(Type serviceType);
IEnumerable<object> GetServices(Type serviceType);

The Code

Let’s consider the simple system shown in Listing 9-4, which is an interface that needs to be injected into a controller.

Listing 9-4. A Test Controller and a Simple Injectable Service

public interface IService

{
}

string SaySomething();

public class HelloService : IService

{

270

CHAPTER 9 © DEPENDENCY INJECTION

public string SaySomething()

{
return "HelloService";
}
}
public class DependencyTestController : ApiController
{
private readonly IService _service;
public DependencyTestController(IService service)
{
_service = service;
}
public string Get()
{
return _service.SaySomething();
}
}

The simplest imaginable implementation of the IHttpControllerActivator is shown in Listing 9-5.

Listing 9-5. Custom IHttpControllerActivator, Acting as a Composition Root

public class SimpleHttpControllerActivator : IHttpControllerActivator
{
public IHttpController Create(
HttpRequestMessage request,
HttpControllerDescriptor controllerDescriptor,
Type controllerType)

if (controllerType == typeof(DependencyTestController))
return new DependencyTestController(
new HelloService());

return null;

Since an activator has access to the controller Type information, you can use it to instantiate the relevant
controller that would serve the request, as well as inject all of its dependencies from a single place. Of course, this
is hardly a sustainable solution, and far from something usable in real world, but it serves the purpose really well,
illustrating how the activators can control and manage the process of controller creation.

It is registered against HttpConfiguration like almost all other internal Web API services.

httpConfiguration.Services.Replace(typeof(IHttpControllerActivator), new
SimpleHttpControllerActivator());

Itis very easy to change the dummy implementation into a very usable custom one. For example, consider the
TinyloC DI container shown in Listing 9-6 (this code requires installing the TinyIoC package from NuGet).

271

CHAPTER 9 © DEPENDENCY INJECTION

Listing 9-6. TinyloC Implementation of IHttpControllerActivator

public class TinyIoCHttpControllerActivator : IHttpControllerActivator

{
private readonly TinyIoCContainer _container;
public TinyIoCHttpControllerActivator(TinyIoCContainer container)
{
_container = container;
}
public IHttpController Create(
HttpRequestMessage request,
HttpControllerDescriptor controllerDescriptor,
Type controllerType)
{
var controller = container.Resolve(controllerType);
return controller as IHttpController;
}
}

In this case, you simply use the TinyIoCContainer to resolve all dependencies. The registration process is
identical to before, with the additional step of configuring the container itself.

var container = new TinyIoCContainer();
container.Register<IService, HelloService>();
config.Services.Replace(typeof(IHttpControllerActivator), new TinyIoCHttpControllerActivator(container));

In the event that Web API doesn’t find a custom IHttpControllerActivator, it uses the default implementation,
DefaultHttpControllerActivator. This ties into the second dependency injection possibility, IDependencyResolver,
since DefaultHttpControllerActivator will use the currently available IDependencyResolver to construct the
relevant controller. IDependencyResolver is registered against HttpConfiguration and is discussed in detail in
Recipes 9-2 and 9-5.

9-2. Add Support for the Most Popular DI Containers
Problem

You would like to use a popular dependency injection container, such as Ninject, StructureMap, or Autofac, in your
ASP.NET Web API application.

Solution

For most of the standard DI containers, the community or the core team responsible for the container has already
provided an IDependencyResolver for ASP.NET Web API. Therefore, you do not have to reinvent the wheel by
trying to implement the adapter yourself; it’s just a matter of installing the relevant package from NuGet or from the
WebApiContrib project, and registering it as your IDependencyResolver.

272

CHAPTER 9 © DEPENDENCY INJECTION

How It Works

The majority of the adapters are provided in the form of an IDependencyResolver, asyou can learn from
Recipe 9-4, which makes it possible to use the containers from outside of the controller (as opposed to using
IHttpControllerActivator).

ASP.NET Web API can only have a single dependency resolver registered at a time, which means that you cannot
combine two different DI containers without resorting to some heavy customizations (writing a custom wrapper
IDependencyResolver, which looks up types in different containers). It was mentioned briefly in Recipe 9-1 that the
DefaultHttpControllerActivator will use the current IDependencyResolver (and its IDependencyScope) to resolve
the controllers. This particular mechanism is shown in Listing 9-7.

Listing 9-7. Excerpt from DefaultHttpControllerActivator Source Code, Where IDependencyResolver Is Used to
Construct the Controller

private static IHttpController GetInstanceOrActivator(HttpRequestMessage request, Type
controllerType, out Func<IHttpController> activator)

{
Contract.Assert(request != null);
Contract.Assert(controllerType != null);
// If dependency resolver returns controller object then use it.
IHttpController instance = (IHttpController)request.GetDependencyScope().
GetService(controllerType);
if (instance != null)
{
activator = null;
return instance;
}
// Otherwise create a delegate for creating a new instance of the type
activator = TypeActivator.Create<IHttpController>(controllerType);
return null;
}
The Code

The following dependency resolver implementations are available in the WebApiContrib project (also on NuGet with
the same package name):

e lWebApiContrib.IoC.CastleWindsor
e WebApiContrib.IoC.Mef
e WebApiContrib.IoC.Ninject
e WebApiContrib.IoC.StructureMap
e WebApiContrib.IoC.Unity
Additionally, the Autofac team provides its own dependency resolver for ASP.NET Web API, Autofac.WebApi2.

Note Autofac is actually used internally by Microsoft to provide dependency injection for ASP.NET Web API services
used in Azure Mobile Services.

273

CHAPTER 9 © DEPENDENCY INJECTION

Once installed, each of them is registered against your HttpConfiguration, and each is automatically picked
up by Web API to resolve controller dependencies, and exposed for further use in other places. This is outside of the
scope of this recipe, but using the dependency resolver manually will be discussed later in Recipe 9-4.

httpConfiguration.DependencyResolver = new AutofacWebApiDependencyResolver();

9-3. Deal with Request Scope
Problem

You would still like to be able to access dependencies in per-request scope in ASP.NET Web API.

Solution

For the incoming HTTP request, ASP.NET Web API begins a dependency scope (IDependencyScope) from the
registered IDependencyResolver, creating a de facto one-to-one relationship between the scope and the request.
This scope can be reused throughout the request’s lifetime, and the framework will dispose of it as soon as request
ends (IDependencyScope is disposable).

By using the relevant HttpRequestMessage extension method, you are able to obtain the current scope and use
it to resolve dependencies. The same scope is also used internally by Web API to create an instance of the relevant
ApiController.

var scope = request.GetDependencyScope(); //returns IDependencyScope

How It Works

By calling the GetDependencyScope method on the current request you get an instance of the IDependencyScope

that is unique to this request only. Because of that, the container used to handle dependency resolution will be a

child container of the main (global) registered container. Since, as mentioned, this child container is specific for the
duration of the request, the framework will dispose of it once the request gets disposed of. This is shown in the excerpt
from ASP.NET Web API source code shown in Listing 9-8.

Such a mechanism makes it easier for the IoC container to provide per-request dependency scope, but ultimately
it all really depends on the particular implementation of the IDependencyResolver. For example, for the Ninject
IDependencyResolver, you are guaranteed that dependencies obtained through GetDependencyScope will be in a
per-request lifetime.

Listing 9-8. Extension Method Responsible for Obtaining the Dependecy Scope

public static IDependencyScope GetDependencyScope(this HttpRequestMessage request)

{
if (request == null)

{
}

throw Error.ArgumentNull("request");

IDependencyScope result;
if (!request.Properties.TryGetValue<IDependencyScope>(HttpPropertyKeys.DependencyScope, out result))

274

CHAPTER 9 © DEPENDENCY INJECTION

IDependencyResolver dependencyResolver = request.GetConfiguration().DependencyResolver;
result = dependencyResolver.BeginScope();
if (result == null)
{
throw Error.InvalidOperation(SRResources.DependencyResolver BeginScopeReturnsNull,
dependencyResolver.GetType().Name);
}
request.Properties[HttpPropertyKeys.DependencyScope] = result;
request.RegisterForDispose(result);

}

return result;

As you can see, the GetDependencyScope method tries to grab the IDependencyScope from the
HttpRequestMessage properties. If it’s already been used during the current request lifetime, it’s reused; otherwise, it
would be created (BeginScope) and added there. In other words, the extension method is merely a wrapper around
the request’s properties dictionary and the HttpPropertyKeys.DependencyScope key. So the scope could also be
obtained by reaching into the dictionary directly.

var dependencyScope = request.Properties[HttpPropertyKeys.DependencyScope] as IDependencyScope;

This approach is not ideal and violates basic inversion of control principles, since the class taking on
dependencies is not explicit about it (does not request its dependencies via a constructor, but rather gains off the
HttpRequestMessage). It is sometimes an acceptable workaround, however, given some of the framework constraints,
which are discussed in Recipe 9-4.

Finally, since you know that the scope is effectively just an entry in the request’s properties dictionary, it’s
relatively easy to mock such hidden dependencies in the unit test.

The Code

You can access dependencies through the current IDependencyResolver in two ways: through the global scope, or
through the per-request scope.

If you interact directly with the resolver available through the HttpConfiguration, the scope will be global, while
if you use the GetDependencyScope method (or the HttpPropertyKeys.DependencyScope key), the scope will be
request-specific.

var globalScope = request.GetConfiguration().DependencyResolver;
var perRequestScope = request.GetDependencyScope();

9-4. DI with Other ASP.NET Web APl Components
Problem

Aside from controller constructor injection, you would like to resolve dependencies in other ASP.NET Web API
artifacts, such as message handlers, filters, and formatters.

275

CHAPTER 9 © DEPENDENCY INJECTION

Solution

Due to the nature of how the handlers, filters, and formatters are constructed in the API pipeline, and their varying
lifetime, it is not possible to perform typical constructor injection into them. You can, however, always obtain a
dependency through the registered IDependencyResolver instance with a call to GetDependencyScope via the current
HttpRequestMessage.

var myService = request.GetDependencyScope().GetService(typeof(IService)) as IService;

How It Works

For performance reasons, filters are cached and reused between requests. Additionally, some filters are shared
between actions (controller-scoped filters and globally-scoped filters). This effectively eliminates any possibility of
constructor injection into them, unless the injected dependency is a singleton, since then its lifetime does not matter
anymore. In general, this type of behavior might be somewhat surprising to developers familiar with ASPNET MVC,
where there is no such lifetime restriction, and constructor injection into filters is possible.

In order to resolve dependencies in the filters, you have to resolve them from the currently registered dependency
resolver manually. While this approach is far from ideal, it works well, and when approached correctly, allows your
filters to remain testable.

Message handlers are created just once in the lifecycle of a Web API application, and then they are reused
between different requests. Therefore, similarly to action filters, trying to inject any dependencies other than
singletons through its constructor does not make sense.

Since message handlers allow you to process the request and response in the same handler method—as it comes
in and as it goes out of your Web API system—you typically only need to obtain the dependency once and it will be
available on both sides of the processing pipeline.

A final element of the Web API pipeline is the collection of MediaTypeFormatters. Because individual formatters
are registered in the formatters collection as instances of Type (not delegates to create an instance), constructor
injection into them is not possible. However, the base MediaTypeFormatter class provides a hook (Listing 9-9) for
enriching the formatter instance with a modified state on a per-request basis.

Listing 9-9. A Useful Hook for Customizing an Instance of a Formatter - GetPerRequestFormatterInstance

public abstract class MediaTypeFormatter

{
//omitted for brevity
public virtual MediaTypeFormatter GetPerRequestFormatterInstance(Type type, HttpRequestMessage
request, MediaTypeHeaderValue mediaType)
{
//overrideable
}
}

The GetPerRequestFormatterInstance method is called every time the framework asks for an instance of a given
type of formatter. By overriding it, you can inject whatever you wish into the formatter, and since you have access to
the current HttpRequestMessage, you can also obtain the dependency scope.

The Code

Let’s look at how you'd deal with dependencies in filters, handlers, and formatters. Each of the following examples
will take advantage of the GetDependencyScope method on the request and use its return type, IDependencyScope, to
resolve services. For insight into the internal behavior of GetDependencyScope, see Recipe 9-3.

276

CHAPTER 9 © DEPENDENCY INJECTION

Filters

With filters, the resolution of the dependency happens directly in the relevant method in which you would need that
dependency, as shown in Listing 9-10.

Listing 9-10. A Sample Filter with a Dummy IService Dependency

public class MyActionFilter : ActionFilterAttribute
{

public override void OnActionExecuting(HttpActionContext actionContext)

{

var myService = actionContext.Request.GetDependencyScope().GetService(typeof(IService)) as
IService;
// do stuff with myService
}

public override void OnActionExecuted(HttpActionExecutedContext actionExecutedContext)

{

var myService = actionExecutedContext.Request.GetDependencyScope().
GetService(typeof(IService)) as IService;
// do stuff with myService
}

Message Handlers

Handlers, similarly to filters, should resolve dependencies inline, directly obtaining the current IDependencyScope
whenever they are required. An example can be seen in Listing 9-11.

Listing 9-11. A Sample Handler with a Dummy IService Dependency

public class MyHandler : DelegatingHandler
{

protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
CancellationToken cancellationToken)

{
var myService = request.GetDependencyScope().GetService(typeof(IService)) as IService;
// do stuff with myService
// before the rest of request is processed
var response = await base.SendAsync(request, cancellationToken);

// do stuff with MyService
// after the request has been processed

return response;

277

CHAPTER 9 © DEPENDENCY INJECTION

Formatters

For the formatters, you have to perform the call to GetDependencyScope inside the GetPerRequestFormatterInstance
method, since that’s the only method that has access to the current HttpRequestMessage. You can then save the
instance of your resolved service in a field or a property of the formatter, so that it can be accessed from other methods
too. This is shown in Listing 9-12.

Listing 9-12. A Sample Formatter with a Dummy IService Dependency

public class MyFormatter : JsonMediaTypeFormatter

{

public IService Service { get; set; }

public override MediaTypeFormatter GetPerRequestFormatterInstance(Type type, HttpRequestMessage
request, MediaTypeHeaderValue mediaType)

var formatter = base.GetPerRequestFormatterInstance(type, request, mediaType);
Service = request.GetDependencyScope().GetService(typeof (IService)) as IService;
return formatter;

9-5. Write a Custom DI Adapter
Problem

You need to write an adapter for the dependency injection container of your choice, as you cannot find a ready-made
solution in the WebApiContrib project. For example, TinyloC is a popular IoC container that doesn’t have an
implementation there.

Solution

You will need to add TinyloC from NuGet.
Install-package TinyIoC

In order to support a given DI container, you need to write a custom resolver by implementing the
IDependencyResolver interface (see Recipes 9-1 and 9-2 for more background). IDependencyResolver inherits from
IDependencyScope, and as such, they could be implemented in a single class, but I always recommend separating

them into different classes as this approach is generally more readable.

public class TinyIoCScope : IDependencyScope

{
//omitted for brevity
}
public class TinyIoCResolver : TinyIoCScope, IDependencyResolver
{
//omitted for brevity
}

278

CHAPTER 9 © DEPENDENCY INJECTION

The registration of the new TinyloC resolver is done the same way as all of the other dependency resolvers
(Recipe 9-2).

var container = new TinyIoCContainer();
//register dependencies in the container
config.DependencyResolver = new TinyIoCResolver(container);

How It Works

In ASP.NET Web API, you are able to interact with two scopes: global, represented by the IDependencyScope
(remember that IDependencyResolver is an IDependencyScope) registered against your HttpConfiguration, and
inner child scope, represented by the IDependencyScope (seen in Listing 9-14) returned from IDependencyResolver’s
BeginScope method (which is disposed at the end of the HTTP request). This one is shown in Listing 9-13.

Listing 9-13. Definition of the IDependencyResolver

public interface IDependencyResolver : IDependencyScope, IDisposable

{
}

IDependencyScope BeginScope();

Whenever a new controller is constructed, which happens for every incoming HTTP request, the Web API
framework will ask for a relevant scope using BeginScope.

Whenever you call GetDependencyScope on the HttpRequestMessage, the framework will try to get a scope for
you by calling BeginScope of the IDependencyResolver, and then cache it for the duration of the HTTP request. See
Recipe 9-3 for more details.

Listing 9-14. Definition of the IDependencyScope

public interface IDependencyScope : IDisposable

{
object GetService(Type serviceType);
IEnumerable<object> GetServices(Type serviceType);

Aside from using the dependency resolver as a way to auto-inject dependencies into your controllers, you are
also able to manually use it as a service locator whenever you need to. Refer to Recipes 9-3 and 9-4 for details.

The Code

Let’s start off a little backwards by implementing the inner interface, IDependencyScope, as it is going to be directly
responsible for resolving services from TinyloC. This can be seen in Listing 9-15.
Listing 9-15. TinyloC-Specific IDependencyScope

public class TinyIoCScope : IDependencyScope
{

protected TinyIoCContainer Container;

279

CHAPTER 9 © DEPENDENCY INJECTION

public TinyIoCScope(TinyIoCContainer container)

{
if (container == null)
throw new ArgumentNullException("container");

Container = container;

public object GetService(Type serviceType)

{
if (Container == null)
throw new ObjectDisposedException("this", "This scope has already been disposed.");
try
{
return Container.Resolve(serviceType);
}
catch (TinyIoCResolutionException)
return null;
}
}
public IEnumerable<object> GetServices(Type serviceType)
{
if (Container == null)
throw new ObjectDisposedException("this", "This scope has already been disposed.");
try
{
return Container.ResolveAll(serviceType);
}
catch (TinyIoCResolutionException)
{
return Enumerable.Empty<object>();
}
}

public void Dispose()
{

Container = null;
GC.SuppressFinalize(this);

To begin with, an instance of TinyIoCContainer, which will be used to resolve inversion of control requests, is

passed through the constructor. By the time this container is instantiated, all the dependencies should have already

been registered in it. In order to find an implementation of a specific class that had been registered against the

container, you simply ask for it using the Resolve method. Resolve will return an object, which you can push down

the Web API pipeline. To get multiple services (IEnumerable<object>), you can use the ResolveAll method. All of
this is in the TinyloC API, which you use to bridge the Web API IoC abstraction with TinyloC’s container.

280

CHAPTER 9 © DEPENDENCY INJECTION

Caution In order to not break the Web API processing pipeline when implementing a custom IDependencyScope,
do not throw an Exception if a dependency cannot be resolved; return null instead for GetService and an empty
Enumerable for the GetServices method.

Next, you'll add the dependency resolver, which will extend the TinyIoCScope and be responsible for initiating
the scope in which dependencies are going to be processed. The code is shown in Listing 9-16.

Listing 9-16. Full Implementation of IDependencyResolver for TinyloC

public class TinyIoCResolver : TinyIoCScope, IDependencyResolver

{
public TinyIoCResolver(TinyIoCContainer container) : base(container)
{3
public IDependencyScope BeginScope()
{
return new TinyIoCScope(Container.GetChildContainer());
}
}

As discussed before, Web API will want to create a scope for every HTTP request (through the BeginScope
method), so you will need to return a new instance of TinyIoCScope from there. Note that TinyloC doesn’t support
a way to create a bounded scope, and even though you use GetChildContainer, it will still continue to resolve the
dependencies based on how they were registered globally (i.e. as a singleton or as a transient dependency).

Tip If you are using Web APl on ASP.NET, you can use TinyloC’s AsPerRequestSingleton extension method on your
registered object to force it into per-request mode. This won’t work on any other host, though.

Registration of the resolver against the configuration is very simple; it's done against your HttpConfiguration.
Suppose you have some service, registered against a TinyloC container, like in Listing 9-17.

Listing 9-17. A Sample Service and Registration of Your Custom TinyloCResolver

public interface IService

{

string SaySomething();
}
public class HelloService : IService
{

public string SaySomething()

{

return "HelloService";

}

}

281

CHAPTER 9 © DEPENDENCY INJECTION

var container = new TinyIoCContainer();

container.Register<IService, HelloService>(); //singleton

container.Register<IService, HelloService>().AsMultiInstance(); //transient
container.Register<IService, HelloService>().AsPerRequestSingleton(); //per-request (ASP.NET only)

httpConfiguration.DependencyResolver = new TinyIoCResolver(container);
That’s it. From now on, all the constructor-injected dependencies in your Web API controllers will be resolved by

TinyloC, through the use of your shiny new TinyloC adapter. You can also get hold of the adapter at any point where
you have access to an HttpRequestMessage, through the techniques discussed in Recipes 9-3 and 9-4.

282

CHAPTER 10

Securing an ASP.NET Web API Service

Security in software development, and more importantly in web development, is a sensitive, vast, and complex topic,
but in this chapter I'll try to make sense of some of the most common techniques for securing ASP.NET Web APIs
services. I'll deal with authentication, authorization, and transport security, as well as look into the Web API way of
dealing with some of the common .NET concepts, such as IPrincipal.

The chapter does not aim to be an A-Z reference on Web API security. Due to the space constraint that I have
here, I'll obviously only be able scratch the surface of many of the concepts. Hopefully it will get deep enough to
get you going.

You will learn how to do the following:

e Use correct Web API components for security tasks, and safely deal with IPrincipal
(Recipes 10-1 and 10-7)

e Use and enforce HTTPS with your ASP.NET Web API (Recipe 10-2)

e Integrate basic authentication and Windows authentication (Recipes 10-3 and 10-4)

e Use MAC-based authentication with the example of Hawk (Recipe 10-5)

e Getstarted with OAuth 2.0 (Recipe 10-6)

e Remove the header footprint injected by ASP.NET Web API applications (Recipe 10-8)

Should you wish to really go in-depth with the security aspects of Web AP], I strongly recommend these resources
as a follow-up to the recipes from this chapter:

e “Pro ASPNET Web API Security: Securing ASPNET Web API” by Badrinarayanan
Lakshmiraghavan, www.apress.com/microsoft/asp-net/9781430257820

e Dominick Baier’s blog at http://leastprivilege.com/. He’s an identity and access
control guru.

e ASP.NET Identity section at www.asp.net/identity

10-1. Use Correct Web APl Components for
Security-Related Tasks

Problem

You cannot decide whether to use message handlers or filters for authorization and authentication.

283

http://www.apress.com/microsoft/asp-net/9781430257820
http://leastprivilege.com/
http://www.asp.net/identity

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Solution

In the first version of ASP.NET Web AP], the distinction was the following:
e UseMessageHandlers for authentication
e Use IAuthorizationFilter for authorization

Since version 2 of the framework, Web API has been OWIN-compatible. This means that you can also take
advantage of OWIN security middleware, such as Microsoft.Owin.Security, when building your ASPNET Web API
applications. Additionally, ASP.NET Web API 2 enhanced its security pipeline by introducing IAuthenticationFilter,
intended explicitly for handling authentication tasks. As a result, it is recommended that you now do the following:

e Use OWIN middleware for host-specific authentication

e UseMessageHandlers for cross-cutting security concerns, such as CORS
(Cross-Origin Resource Sharing)

e Use IAuthenticationFilter for ASP.NET Web API-specific authentication

e Use IAuthorizationFilter for authorization

Tip These rules are not set in stone, and, technically, there is nothing wrong with using MessageHandlers for
authentication purposes; however, all of the newest security components will likely be written as
IAuthenticationFilters.

How It Works

The distinction between authentication and authorization is clear and applicable to any identity-driven software,
regardless of the technology or framework applied.

e Authentication deals with a user’s identity, verifying if the user, or connecting client, really is
who he is claiming to be.

e Authorization deals with granting the user (connecting client) access to specific resources and
system operations based on the user’s identity.

On the Web API framework level, it's important to perform authorization and authentication in separate
components to avoid coupling of the two concepts in a single class. ASP.NET Web API ships with a single, simple
implementation of TAuthorizationFilter called AuthorizeAttribute. It provides support for authorizing users
based on the following:

e The sole fact they are authenticated (the HttpRequestMessage carries an
associated IPrincipal)

e Role name(s)
e User name(s)

The method that’s responsible for this is shown in Listing 10-1, in an excerpt from the ASP.NET Web API source
code. Itis virtual so you are able to override this default behavior with your own custom logic, and extend the
authorization mechanisms in your Web API application this way.

284

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Listing 10-1. IsAuthorized Method of AuthorizeAttribute

protected virtual bool IsAuthorized(HttpActionContext actionContext)

{
if (actionContext == null)
{
throw Error.ArgumentNull("actionContext");
}

IPrincipal user = actionContext.ControllerContext.RequestContext.Principal;
if (user == null || user.Identity == null || !user.Identity.IsAuthenticated)
{

}

return false;

if (_usersSplit.Length > 0 8& ! usersSplit.Contains(user.Identity.Name, StringComparer.
OrdinalIgnoreCase))

return false;

}

if (_rolesSplit.Length > 0 8& ! rolesSplit.Any(user.IsInRole))

return false;

}

return true;

As far as the Web API execution pipeline is concerned, prior to executing the controller action relevant for the
current HTTP request, ASP.NET Web API will gather all global, controller-level, and action-level filters and group
them by type:

e Authentication filters

Authorization filters
e Action filters
e Exception filters

Then a filter pipeline is formed, with global ones given the highest, and action-level the lowest,
precedence. They get executed one after another, with each filter having the option to short-circuit (immediately
return) an HttpResponseMessage. In this filter pipeline, IAuthenticationFilter is always executed before
TAuthorizationFilter.

Note The filter pipeline is discussed in more detail in Chapter 5.

285

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Core ASP.NET Web API does not ship with any concrete implementation of IAuthenticationFilter. The only
available implementation is HostAuthenticationFilter, which is part of System.Web.Http.Owin from the Microsoft.
AspNet.WebApi.Owin NuGet package (you will install this whenever you need an OWIN adapter for Web API), and is
intended to be integrated with the host-level authentication provided by the Katana authentication middleware.

HostAuthenticationFilter uses IAuthenticationManager from Microsoft.Owin.Security to perform host-
level authentication, and set the IPrincipal (in the form of ClaimsPrincipal) on the HttpAuthenticationContext.
In fact, HostAuthenticationFilter is not even an Attribute, so it cannot be used to decorate actions
and controllers. Instead, HostAuthenticationAttribute can be used as a proxy (it forwards all the calls to
HostAuthenticationFilter).

Message handlers (DelegatingHandlers) are general purpose execution pipeline components that are suitable
for processing raw HttpRequestMessages and HttpResponseMessages. As such, they are generally appropriate for a
wide range of security-related tasks. A great example of a message handler-based Web API authentication component
is the Thinktecture.IdentityModel.WebApi.AuthNHandler NuGet package. As a message handler, it supports

e JSON Web Token (JWT)

e Simple Web Token (SWT)

e Security Assertion Markup Language (SAML) tokens
e Basic authentication

e C(lient certificates

e Access keys

The handler looks for relevant credentials on every request, and if found, will create an IPrincipal
(ClaimsPrincipal) and set it against the RequestContext of the current Ht tpRequestMessage, or deny access if needed.

The Code

Registration of message handler-based authentication components is the same as registering any other Web API
message handler, and is done against the MessageHandlers collection hanging off the HttpConfiguration instance.
The following code shows registration of the AuthenticationHandler from Thinktecture.IdentityModel.WebApi.
AuthNHandler:

var authenticationConfiguration = new AuthenticationConfiguration();

//configure authenticationConfiguration according to your application's needs
httpConfiguration.MessageHandlers.Add(new AuthenticationHandler(authenticationConfiguration));

When running ASP.NET Web API on top of OWIN, to register the HostAuthenticationFilter with a specific type
of Katana authentication middleware for your entire Web API, you need to add that filter to the Filters collection of
the HttpConfiguration. HostAuthenticationFilter requires you to pass in the authentication type (corresponding
to the relevant OWIN middleware). For example, this is how it would look for Facebook authentication:

httpConfiguration.Filters.Add(new HostAuthenticationFilter("Facebook"));

Obviously, this would only work if your Katana pipeline has Facebook authentication middleware already
enabled, which is done against your IAppBuilder, in your OWIN Startup class.

app.UseFacebookAuthentication(

appId: "{your ID}",
appSecret: "{your secret}");

286

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Since HostAuthenticationFilter can also be used as an Attribute (proxied via
HostAuthenticationAttribute), it can also be applied at controller or action level, allowing you to control which
specific resources in your API require authentication. For example, in Listing 10-2, the GetAll method does not
require authentication, while GetSingle is available to anyone, as long as they have authenticated with Facebook.

Listing 10-2. Application of HostAuthenticationAttribute

public class SampleController : ApiController

{
[HostAuthentication("Facebook")]
public HttpResponseMessage GetAll()
{
//omitted for brevity
}
public HttpResponseMessage GetSingle(int id)
{
//omitted for brevity
}
}

However, such a granular approach to authentication is generally not recommended, as it blurs the lines between
authorization and authentication.

Instead, once authentication is enforced globally through a globally registered IAuthenticationFilter ora
MessageHandler, you can use AuthorizationAttribute to enforce the requirement of being authenticated at specific
API endpoints, as well as perform specific authorization tasks, such as role-based restriction. This is shown in
Listing 10-3; in both cases in this example, the attribute will first check for the presence of an IPrincipal that should
be populated by the authentication filter or message handler responsible for authentication, and if it’s not there, the
user will be denied access.

Listing 10-3. Application of AuthorizeAttribute

public class SampleController : ApiController

{
[Authorize(Roles = "VIP")]

public HttpResponseMessage GetAll()
{

}

//omitted for brevity

[Authorize]
public HttpResponseMessage GetSingle(int id)

{
}

//omitted for brevity

287

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

10-2. Add HTTPS Support to ASP.NET Web API
Problem

You would like your ASP.NET Web API service to use TLS (Transport Layer Security) and the HTTPS scheme
instead of HTTP.

Solution

When running ASP.NET Web API on top of IIS, HTTPS can be enforced at the IIS level, through IIS Manager, in

the Bindings » Add site binding dialogshown in Figure 10-1. You will have to associate a valid SSL certificate
that’s installed on your machine with the HTTPS binding that you create. Afterwards, in ASP.NET Web API itself, no
additional changes are necessary.

Add Site Binding > IEl

Type: IP address: Port:
https v | | All Unassigned v 4443
Host name:
localhost

[] Require Server Mame Indication

SSL certificate:

IIS Express Development Certificate v Select... View...

Cancel

Figure 10-1. Configuring HTTPS binding in IIS

If you use other hosts for your Web API, you can enforce the HTTPS scheme directly from within the Web API
configuration. To do that, you will first need to bind the SSL certificate (certificate creation is beyond the scope of
this recipe) to a specific port on your machine using netsh, a command-line Windows utility, allowing you to modify
network settings.

netsh http add sslcert ipport=0.0.0.0:4443 certhash={certificate hash} appid={application Guid}

You can then use the HTTPS scheme when creating a new hosted instance of your Web AP]I, both in self-hosed
Web API and in OWIN (for example, using Katana) outside of System.Web/IIS. This is shown in Listing 10-4.

288

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Listing 10-4. Configuration of HTTPS in Self-hosted and OWIN-hosted Web API, Outside of IIS

//self host
var config = new HttpSelfHostConfiguration("https://localhost:4443/");

//owin - configuration of Web API done in the Startup class
using (WebApp.Start<Startup>("https://localhost:4443/"))
{

//omitted for brevity

Note Additionally, you may need to reserve the URL and port using the following netsh command: netsh http add
urlacl url=https://localhost:4443/ user={domain}\{username}

How It Works

The HTTPS scheme was defined in RFC 2818 as a blueprint for providing security for HTTP-based communication,
and stands for “HTTP over TLS.

HTTP [RFC2616] was originally used in the clear on the Internet. However, increased use of HTTP
for sensitive applications has required security measures. SSL and its successor TLS [RFC2246] were
designed to provide channel-oriented security.

Internet Engineering Task Force, RFC 2818,
http://tools.ietf.org/html/rfc2818

When the communication between the client and the server happens over HTTPS, the HTTP protocol is layered
on top of a secure protocol, such as SSL (predecessor to TLS) or TLS (Transport Layer Security), instead of just the
raw TCP.

The current TLS version, 1.2, was introduced by RFC 2246 and defined bidirectional, private, reliable, and secure
communication. TLS is flexible in terms of cryptographic algorithms, combining both asymmetric and symmetric
encryption; public key cryptography is used to authenticate the server to the client, while the majority of data is
encrypted using symmetric encryption.

On the Web API level, in addition to globally enabling your ASP.NET Web API to use HTTPS, you can also
introduce relevant components into the ASP.NET Web API pipeline that will ensure that a given request has been sent
over an HTTPS scheme. This can be done as a message handler or an authentication filter. There is no base class for
authentication filters so you will have to implement the IAuthenticationFilter, shown in Listing 10-5, by hand.

Listing 10-5. Defitinion of IAuthenticationFilter

public interface IAuthenticationFilter

{

void OnAuthentication(AuthenticationContext filterContext);
void OnAuthenticationChallenge(AuthenticationChallengeContext filterContext);

289

http://tools.ietf.org/html/rfc2818

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

The Code

If you decide to go with a handler, you can plug it into the HttpConfiguration to enable HTTPS enforcement against
your entire API. With the filter approach, you may choose only specific endpoints as requiring HTTPS by decorating
the relevant controller or action method with a filter attribute. See Listings 10-6 and 10-7 for examples of these
approaches.

Listing 10-6. An Authentication Filter Enforcing HTTPS

public class RequireHttpsAttribute : IAuthenticationFilter

{
public bool AllowMultiple
{
get { return true; }
}
public Task AuthenticateAsync(HttpAuthenticationContext context, CancellationToken
cancellationToken)
{
if (context.Request.RequestUri.Scheme != Uri.UriSchemeHttps)
{
context.ActionContext.Response = new HttpResponseMessage(System.Net.HttpStatusCode.
Forbidden)
{
ReasonPhrase = "HTTPS Required"
b
}
return Task.FromResult(true);
}

public Task ChallengeAsync(HttpAuthenticationChallengeContext context, CancellationToken
cancellationToken)

{
}

return Task.FromResult(true);

Listing 10-7. A Message Handler Enforcing HTTPS

public class RequireHttpsHandler : DelegatingHandler
{

protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
CancellationToken cancellationToken)
{
if (request.RequestUri.Scheme != Uri.UriSchemeHttps)

return Task.FromResult(new HttpResponseMessage(System.Net.HttpStatusCode.Forbidden)

290

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

{
ReasonPhrase = "HTTPS Required"
D;

}

return base.SendAsync(request, cancellationToken);

If you are running a version of Web API older than version 2, IAuthenticationFilter will not be available to you.
In that case, you can provide the same type of functionality by extending the AuthorizeFilterAttribute base class,
such as in the example in Listing 10-8. However, authentication filters run earlier in the pipeline, and therefore, from
the textbook security standpoint are more suitable.

Listing 10-8. Enforcing HTTPs with AuthorizeFilterAttribute

public class RequireHttpsAttribute : AuthorizationFilterAttribute

{
public override void OnAuthorization(HttpActionContext actionContext)
{
if (actionContext.Request.RequestUri.Scheme != Uri.UriSchemeHttps)
{
actionContext.Response = new HttpResponseMessage(System.Net.HttpStatusCode.Forbidden)
{
ReasonPhrase = "HTTPS Required"
};
}
else
{
base.OnAuthorization(actionContext);
}
}
}

With the message handler approach, you then need to register the handler in the HttpConfiguration.

var config = new HttpConfiguration();
config.MessageHandlers.Add(new RequireHttpsHandler());

If you opt to use filters, you can use them directly on the relevant actions or a controller, like so:

[RequireHttps]
public class MyController : ApiController

{

//omitted for brevity
}

291

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Tip If you are using an invalid certificate with HttpClient, requests will fail, making development and testing very
frustrating. To mitigate that, you can introduce the following line of code, which instructs System.Net to ignore all
SSL errors:

ServicePointManager.ServerCertificateValidationCallback += (sender, certificate, chain, sslErrors)
=> true;

10-3. Use Basic Authentication
Problem

You want to secure your ASP.NET Web API resources with Basic authentication.

Solution

While it’s definitely possible to roll out your own Basic authentication support in the form of OWIN middleware, a
Web API MessageHandler, or a Web API authentication filter, there is no need to reinvent the wheel.

The Thinktecture.IdentityModel library already provides an excellent and very flexible Basic authentication
support (and other types of authentication mechanisms too, via the same package). To get started, install the Web API
version of the library from NuGet.

Install-Package Thinktecture.IdentityModel.WebApi.AuthenticationHandler

You then have to configure the Basic authentication settings (such as enforcing SSL, header name, logic
responsible for validating username and password, and so on) and register a Thinktecture AuthenticationHandler
against your HttpConfiguration.

Alternatively, if you are using Katana (OWIN), you can choose to handle Basic authentication outside your Web
API and opt to use the Thinktecture Basic Authentication OWIN middleware instead. This is done through a separate
package.

Install-Package Thinktecture.IdentityModel.Owin.BasicAuthentication

This package contains the BasicAuthenticationHandler Katana middleware, which extends
AuthenticationHandler middleware from Microsoft.Owin.Security.

How It Works

Basic authentication is the simplest, and arguably most commonly used, technique for securing HTTP APIs. With
Basic authentication, the username and password are sent unencrypted (only base64 encoded) in the Authorization
header of every request the client makes to the server. This automatically means that in order to ensure that the
credentials are not compromised, Basic authentication must be used together with TLS or SSL.

Basic authentication was first introduced by RFC 1945, back in 1996, as part of Hypertext Transfer
Protocol HTTP/1.0.

292

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

The “basic” authentication scheme is based on the model that the user agent must authenticate
itself with a user-ID and a password for each realm. The realm value should be considered an
opaque string which can only be compared for equality with other realms on that server. The server
will authorize the request only if it can validate the user-1D and password for the protection space
of the Request-URI. There are no optional authentication parameters.

Hypertext Transfer Protocol — HTTP/1.0, RFC 1945,
www.rfc-base.org/txt/rfc-1945.txt

Requests to API endpoints protected by Basic authentication should contain an Auhorization header and base64
encoded username and password, concatenated with a colon, and preceded by a Basic keyword.

Authorization: Basic ZmlsaXA6YWJj

On the server side, in case the client tries to access an endpoint without passing in the correct (or any)
credentials, the server issues a 401 Not Authorized response containing a WWlW-Authenticate header.

WWW-Authenticate: Basic realm="Apress"

By default, the Thinktecture implementation of basic authentication requires SSL, automatically sets the
IPrincipal object on the incoming HTTP request, and sends back the proper WWW-Authenticate header in case the
authentication fails. All of that and more is controlled via the AuthenticationConfiguration class, an overview of
which is shown in Listing 10-9. As a result, you are able to easily customize the Basic authentication behavior to suit
your application’s needs.

Listing 10-9. Overview of AuthenticationConfiguration

public class AuthenticationConfiguration

{
public void AddMapping(AuthenticationOptionMapping mapping);
public bool TryGetAuthorizationHeaderMapping(string scheme, out SecurityTokenHandlerCollection
handler);
public bool TryGetHeaderMapping(string headerName, out SecurityTokenHandlerCollection handler);
public bool TryGetQueryStringMapping(string paramName, out SecurityTokenHandlerCollection handler);
public bool TryGetClientCertificateMapping(out SecurityTokenHandlerCollection handler);
public List<AuthenticationOptionMapping> Mappings { get; set; }
public bool SendwwwAuthenticateResponseHeaders { get; set; }
public ClaimsAuthenticationManager ClaimsAuthenticationManager { get; set; }
public bool InheritHostClientIdentity { get; set; }
public bool EnableSessionToken { get; set; }
public SessionTokenConfiguration SessionToken { get; set; }
public bool RequireSsl { get; set; }
public bool SetPrincipalOnRequestInstance { get; set; }
public bool HasAuthorizationHeaderMapping { get; }
public bool HasHeaderMapping { get; }
public bool HasQueryStringMapping { get; }
public bool HasCookieMapping { get; }
public bool HasClientCertificateMapping { get; }
}

The Thinktecture library also provides helpers (HttpClientExtensions) for HttpClient so that you can easily
add Basic authentication credentials if you are making HTTP requests from .NET code.

293

http://www.rfc-base.org/txt/rfc-1945.txt

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

The Katana version of the library uses BasicAuthenticationOptions as a model to configure Basic
authentication in your application. It inherits from an abstract AuthenticationOptions class (shown in Listing 10-10),
which is part of Microsoft.Owin.Security.

Listing 10-10. Definition of AuthenticationOptions Class (Comments Come From Katana Source Code)

public abstract class AuthenticationOptions

{

private string _authenticationType;

/// <summary>

/// Initialize properties of AuthenticationOptions base class

/// </summary>

/// <param name="authenticationType">Assigned to the AuthenticationType property</param>
protected AuthenticationOptions(string authenticationType)

{
Description = new AuthenticationDescription();
AuthenticationType = authenticationType;
AuthenticationMode = AuthenticationMode.Active;
}

/// <summary>

/// The AuthenticationType in the options corresponds to the IIdentity AuthenticationType
property. A different

/// value may be assigned in order to use the same authentication middleware type more than once
in a pipeline.

/// </summary>

public string AuthenticationType

{
get { return _authenticationType; }
set
{
_authenticationType = value;
Description.AuthenticationType = value;
}
}

/// <summary>

/// If Active the authentication middleware alter the request user coming in and

/// alter 401 Unauthorized responses going out. If Passive the authentication middleware will
only provide

/// identity and alter responses when explicitly indicated by the AuthenticationType.

/// </summary>

public AuthenticationMode AuthenticationMode { get; set; }

/// <summary>

/// Additional information about the authentication type which is made available to the
application.

/// </summary>

public AuthenticationDescription Description { get; set; }

294

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

The Code

Setting up HttpConfiguration to use a Thinktecture Basic Authentication library is shown in Listing 10-11.

Listing 10-11. Configuring Basic Authentication with Thinktecture.IdentityModel for Web API

var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();

//use defaults
var authenticationConfiguration = new AuthenticationConfiguration();
authenticationConfiguration.AddBasicAuthentication((userName, password) =>

{
//your logic for validating username/password
//in this example, only user "filip" is allowed
return userName == "filip" &8 password == "abc";
;s

config.MessageHandlers.Add(new AuthenticationHandler(authenticationConfiguration));

The process is three-fold:

1. An authentication configuration object is set up, in this particular case using all of the
default settings.

2. Ausername/password validation logic is introduced in the form of a
Func<string,string,bool>. This can be any logic, including ASP.NET Membership, ASP.
NET Identity, or any other custom user management implementation that’s used by your
application.

3. Thinktecture AuthenticationHandler is registered into the MessageHandlers collection of
the HttpConfiguration object.

As mentioned, all core behavior of the library is customizable. For example, the following example introduces
validation against an instance of a custom (hypothetical) UserService class, with MyAuthorizationHeader (instead of
the standard Authorize) and using an Apress realm:

authenticationConfiguration.AddBasicAuthentication((userName, password) => myUserService.
Validate(userName, password), AuthenticationOptions.ForHeader("MyAuthorization"), realm: "Apress");

The setup of the Katana version of the Thinktecture Basic Authentication library is done through an IAppBuilder
extension method and is shown in Listing 10-12. The semantics are similar to previous examples: Basic authentication
is configured to use Apress realm, and a very simple username/password validation logic is included. The only
difference is that in this case, you are responsible for returning a list of System.Security.Claims.Claim objects
yourself.

Listing 10-12. Configuring Basic Authentication with Thinktecture.IdentityModel for OWIN (Katana)

public class Startup

{
public void Configuration(IAppBuilder appBuilder)

{

//this would be your username validation service
var myUserService = new UserService();

295

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

var authOpts = new BasicAuthenticationOptions("Apress", async (username, pwd) =>

{
if (myUserService.Validate(username, pwd))
{
return new|]
{
new Claim(ClaimTypes.Name, username)
}.AsEnumerable();
}

return null;

1

appBuilder.UseBasicAuthentication(authOpts);

//continue with IAppBuilder set up, add Web API etc.

10-4. Integrate Windows Authentication
Problem

You want to enable Integrated Windows Authentication against your ASP.NET Web API service.

Solution

At the time of writing there is no Katana middleware supporting Windows Authentication; however, both of the most
popular ASP.NET Web API hosts, IIS and HttpListener, do have built-in support for it.

To enable Windows Authentication in an IIS-hosted Web API, add the following entry to the <system.webServer />
section of your web. config file

<security>
<authentication>
<anonymousAuthentication enabled="false" />
<windowsAuthentication enabled="true" />
</authentication>
</security>

For new ASP.NET Web projects created in Visual Studio 2013, you can also select Windows Authentication as the
authentication option from the One ASP.NET wizard, as shown in Figure 10-2.

296

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

New ASP.NET Project - Apress.Recipes.WebApi.WebHost

Select a template:
A project template for creating RESTful HTTP services that

p=c3 =3 =c3 =3 can reach a broad range of clients including browsers and
@_] @_] @_] e mobile devices.
Empty Web Forms MVC Web API
Learn more
ch Fca F.:a
o] ol e
Single Page Facebook Windows
Application Azure Mobile
Service

Change Authentication

For intranet applications.

) No Authentication Learn more

) Individual User Accounts
_) Organizational Accounts

®) Windows Authentication

ok] (Gl |

Figure 10-2. New ASP.NET Web API with Windows Authentication

When running on top of HttpListener, you need to set the AuthenticationSchemes property on the listener
instance to AuthenticationSchemes.IntegratedWindowsAuthentication. This approach is the way to go when you
use the new OWIN Self-host Web API NuGet package (Microsoft.AspNet.WebApi.OwinSelfHost).

If you still use the WCF-wrapped HttpListener, HttpSelfHostServer, from the older Web API self-host package
(Microsoft.AspNet.WebApi.SelfHost), then the HttpSelfHostConfiguration exposes a ClientCredentialType
property that you need to set to HttpClientCredentialType.Windows.

How It Works

Negotiation of security through the use of Windows credentials is done over the SPNEGO (Simple and Protected
Negotiation) protocol. The protocol determines whether NTLM or Kerberos should be used for authentication
purpose and is responsible for establishing a secure session between server and client. The HTTP Authentication for
Microsoft Windows is performed via the Negotiate scheme and it builds upon the Basic authentication mechanism.

297

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Note A complete reference, “SPNEGO-based Kerberos and NTLM HTTP Authentication in Microsoft Windows” can be
found in RFC 4559, at www.ietf.org/rfc/rfc4559.txt

The Negotiate scheme is supported in all of the major Windows web browsers, as well as in the .NET
HttpClient, where client Windows credentials can be included by simply passing the client’s requests through an
HttpClientHandler with UseDefaultCredentials set to true.

var client = new HttpClient(new HttpClientHandler() {
UseDefaultCredentials = true

B;

On IIS, when Windows Authentication is enabled in your application, each request will pass through a
WindowsAuthenticationModule, which will set the User on the HttpContext object to the current Windows identity.

On the OWIN self-host, interaction with the instance of the HttpListener is possible because Katana will keep
the reference to it in the OWIN dictionary, under System.Net.HttpListener key. You can retrieve the listener this
way, and enforce specific authentication (in this case Windows) on it through the relevant AuthenticationSchemes
enumeration member (shown in Listing 10-13).

Listing 10-13. Definition of AuthenticationSchemes Enumeration

public enum AuthenticationSchemes
{
None = 0,
Digest = 1,
Negotiate = 2,
Ntlm = 4,
IntegratedWindowsAuthentication = Ntlm | Negotiate,
Basic = 8,
Anonymous = 32768,

Of course, you could easily question this approach. Relying on the underlying server’s capabilities for
authentication defeats the purpose of OWIN in the first place because the application is no longer portable to a
different server.

With HttpSelfHostServer, Windows Authentication is handled via WCF HttpBinding. Some of the Web API
sources suggest overriding the virtual OnConfigureBinding method of the HttpSelfHostConfiguration and set
ClientCredentialType and HttpBindingSecurityMode (enforce basic authentication) there.

This is definitely possible, but not necessary; simply setting ClientCredentialType on the
HttpSelfHostConfiguration to anything other than HttpClientCredentialType.None results in
HttpBindingSecurityMode to be internally set to TransportCredentialOnly. This is shown in Listing 10-14, which is
an excerpt from the HttpSelfHostConfiguration source code.

298

http://www.ietf.org/rfc/rfc4559.txt

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Listing 10-14. Automatic Adjustment of HttpBindingSecurityMode in HttpSelfHostConfiguration

if (_clientCredentialType != HttpClientCredentialType.None)

{
if (httpBinding.Security == null || httpBinding.Security.Mode == HttpBindingSecurityMode.None)
{
// Basic over HTTP case
httpBinding.Security = new HttpBindingSecurity()
{
Mode = HttpBindingSecurityMode.TransportCredentialOnly,
};
}
httpBinding.Security.Transport.ClientCredentialType = clientCredentialType;
}
The Code

An example of enabling Windows Authentication on WCF Web API self-host by configuring
HttpSelfHostConfiguration is shown in Listing 10-15, with the key line of code highlighted.

Listing 10-15. Using Windows Authentication with HttpSelfHostServer

var addr = "http://localhost:925";
var config = new HttpSelfHostConfiguration(addr)

{
)

config.MapHttpAttributeRoutes();
using (var server = new HttpSelfHostServer(config))

{

ClientCredentialType = HttpClientCredentialType.Windows

server.OpenAsync().Wait();
Console.ReadLine();

An example of enabling Windows Authentication on Katana self-hosted Web API (HttpListener) is shown in
Listing 10-16. This time, you have to extract the instance of HttpListener from the OWIN Properties dictionary.

Listing 10-16. Katana Startup Class Supporting Windows Authentication in Web API

class Startup

{
public void Configuration(IAppBuilder app)

{

var listener = app.Properties["System.Net.HttpListener"] as HttpListener;
if (listener !'= null)

{
}

listener.AuthenticationSchemes = AuthenticationSchemes.IntegratediWindowsAuthentication;

299

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();
app.UseWebApi(config);

On the web host, as mentioned, it is done through an authentication configuration element. Normally, enabling
Windows Authentication is done together with disabling anonymous authentication.

<system.webServer>
<security>
<authentication>
<anonymousAuthentication enabled="false" />
<windowsAuthentication enabled="true" />
</authentication>
</security>
</system.webServer>

Tip For detailed information about windowsAuthentication IIS configuration element, check the official documentation at
www.iis.net/configreference/system.webserver/security/authentication/windowsauthentication.

For development activities, you normally need to configure IIS Express (used by Visual Studio) to use Windows
authentication as well. This is done directly from Visual Studio, in the Project Properties window, under the
Development Server section, as shown in Figure 10-3. Anonymous authentication can be disabled from there too.

Apress.Recipes.WebApi.WebHost Project Properties

B Development Server
Always Start When Debugginc True
Anonymous Authentication Disabled
Managed Pipeline Mode Integrated
SSL Enabled False

Windows Authentication Enabled

Figure 10-3. Configuring Windows authentication in IIS Express

300

http://www.iis.net/configreference/system.webserver/security/authentication/windowsauthentication

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

10-5. Use the Hawk Authentication Scheme
Problem

You'd like to use the Hawk authentication scheme to provide partial HTTP request verification for your ASP.NET Web
API service.

Solution

Pablo Cibraro has created an excellent open source implementation of Hawk for .NET. His project includes both an
ASP.NET Web API-specific implementation (using a message handler, HawkMessageHandler) and a Katana-compatible
one, built as OWIN middleware: HawkAuthenticationMiddleware. Either one of those can easily be integrated into
your Web API projects, depending on which approach is more convenient for you.

To install the ASPNET Web API version from NuGet, use the following command:

Install-Package HawkNet.WebApi
The OWIN version, for Katana, is available at
Install-Package HawkNet.Owin

The Web API package also contains a HawkClientMessageHandler, which can be used on the client side in
conjunction with HttpClient.

How It Works

Hawk is a MAC-based (message authentication code) authentication scheme for HTTP. It’s a great alternative for all of
the scenarios where the HTTP-exposed services are unable to be offered over TLS (Transport Layer Security). It covers
both the HTTP request and response, and provides built-in replay protection. Hawk requires a symmetric key to be
shared between the client and the server.

With Hawk, a MAC is calculated from the key, timestamp, nonce (a unique string across the same timestamp
and key) and a combination of HTTP method, request URI, and, if present, the payload of the message (including
content type as part of the concatenated representation).

Replay protection is achieved by using both a timestamp window and a nonce to compute the MAC. A nonce is
any string that can be generated by the client, that is unique for a given key-timestamp combination. The server is
then responsible for storing the nonce for the duration of a timestamp window (by default 1 minute). Each nonce can
only be used once.

When using the Hawk authentication scheme, the following fields need to be passed as part of the HTTP
Authorization header, under the Hawk scheme:

e ID, as the id field

e timestamp, as the ts field

e nonce, as the nonce field

e calculated MAC, as the mac field, base64 encoded

¢ (optionally) hash of the request payload, as the hash field

e (optionally) extra data, which could be any application-specific data not contained in the body
of the request, as the ext field

301

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

The other side of the communication process (the server) can recalculate the MAC using the provided fields and
the symmetric key, and verify the validity of the incoming request.

In general, HMAC-based authentications mechanisms, such as Hawk, are often used in machine-to-machine
APIs, such as the interaction between your application’s backend with Amazon Web Services or between different
systems that are part of your enterprise application landscape.

Tip You can read more about Hawk at the project’s official Github repository at
https://github.com/hueniverse/hawk.

The Code

Listing 10-17 shows an example of configuring an ASP.NET Web API service (in this case a self-hosted one) to use
Hawk. Since HawkMessageHandler is a subclass of DelegatingHandler, it has to be added to the MessageHandlers
collection on your HttpConfiguration. In this example, the server is configured to use a predefined key and SHA256
algorithm. The time skew is the second parameter passed to HawkMessageHandler and it defines the length of the
window that the timestamp between the client and the server can drift apart.

Listing 10-17. Web API Self-host Using HawkNet
const string address = "http://localhost:925/";

var config = new HttpSelfHostConfiguration(address);
config.MapHttpAttributeRoutes();
var handler = new HawkMessageHandler(
async id => new HawkCredential
{
Id = id,
Key = "abcdefghijkl",
Algorithm = "sha256",
User = "filip"
}, 30, true);

config.MessageHandlers.Add(handler);
using (var server = new HttpSelfHostServer(config))

server.OpenAsync().Wait();
Console.ReadLine();

HawkMessageHandler will create a new ClaimsPrincipal and a ClaimsIdentity, set to “Hawk’, and inject it into
the Web API pipeline so that you can access it all across the ASP.NET Web API service. In the example from Listing 10-17,
the ClaimTypes.Name will be set to “filip” since the username is explicitly set as HawkCredential.

It is now enough for you to decorate the relevant controllers/action in your Web API with AuthorizeAttribute to
prevent access of unauthorized or anonymous clients.

An example of calling the Hawk-protected endpoint using HttpClient is shown in Listing 10-18. On this side
of the equation, HawkNet also provides some helpers: HawkClientMessageHandler can be used together with

302

https://github.com/hueniverse/hawk

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

HttpClient to simplify its configuration. It will deal with all the Hawk-related responsibilities, such as converting
aHawkCredential instance into relevant Authorization header value, introducing a timespan value, generating a
nonce, calculating MAC, and so on.

Listing 10-18. Calling a Hawk-Protected Web API Endpoint from HttpClient

var credential = new HawkCredential

{
Id = "this-is-my-id",
Key = "abcdefghijkl",
Algorithm = "sha256",
User = "filip"

1

var clientHandler = new HawkClientMessageHandler(new HttpClientHandler(), credential, ts: DateTime.Now);
var client = new HttpClient(clientHandler);

var request = new HttpRequestMessage(HttpMethod.Get, "http://localhost:925/test");

var response = await client.SendAsync(request);

//process response

Of course, calling the endpoint will work from any client, not just HttpClient, as long as the Authorization
header is properly set. The raw HTTP request from your example should look like this:

GET http://localhost:925/test HTTP/1.1

Host: localhost:925

Hawk id="this-is-my-id", ts="1401189959", nonce="MWPwhT", mac="vAID3BDSYUVUg/C4u+3g2d10]6e]s8QRxTrf
gHhCRR8=", ext=""

Tip The GitHub repository for HawkNet is full of many detailed, interesting samples at
https://github.com/pcibraro/hawknet/.

10-6. Use OAuth 2.0 with ASP.NET Web API
Problem

You would like to use your ASP.NET Web API application as an OAuth 2.0 server, as well as enable OAuth bearer
authentication for consuming OAuth bearer tokens.

Solution

Project Katana provides the middleware necessary for running an OAuth2 server as part of the Microsoft.Owin.
Security.OAuth NuGet package. To get up and running, you need to use two primary extension methods as part of
your Katana configuration:

e UseOAuthBearerAuthentication, to enable OAuth bearer token support (token consumption)

e UseOAuthAuthorizationServer, to enable your Web API OWIN-hosted application to act as
an OAuth server, performing the credentials validation and granting a bearer token allowing
access to specific resources

303

https://github.com/pcibraro/hawknet/

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

How It Works

The OAuth 2.0 Authorization Framework is defined in RFC 6749, and succeeds OAuth 1.0 (RFC 5849).

The OAuth 2.0 authorization framework enables a third-party application to obtain limited access
to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction
between the resource owner and the HTTP service, or by allowing the third-party application to
obtain access on its own behalf.

Internet Engineering Task Force (IETF), RFC 6749,
http://tools.ietf.org/html/xrfc6749

OAuth 2.0 supports two primary authentication variants: three-legged (originally developed as part of OAuth 1.0)
and fwo-legged. In a three-legged approach, a resource owner (a user), can assure a third party client (for example
a mobile application) about his identity through a content provider (OAuth server) without having to share any
credentials with that third-party client. A two-legged approach is a typical client-server approach, where a client can
directly authenticate the user with the content provider.

Configuration of the Katana-based OAuth Authorization Server is primarily done through the
IOAuthAuthorizationServerProvider and OAuthAuthorizationServerOptions classes.

An outline of OAuthAuthorizationServerOptions is shown in Listing 10-19. It extends the abstract
AuthenticationOptions from Microsoft.Owin.Security and is used to set the core server options such as enforcing
HTTPS, error detail level, token expiry, or endpoint paths. You can also use it to control the security of data contained
in the access tokens and authorization codes. Out-of-the-box the security is host-specific; System.Web will use
machine key data protection, while HttpListener will rely on the data protection application programming
interface (DPAPI).

Listing 10-19. Outline of OAuthAuthorizationServerOptions

public class OAuthAuthorizationServerOptions : AuthenticationOptions

{
public OAuthAuthorizationServerOptions()

: base(OAuthDefaults.AuthenticationType)

{
AuthorizationCodeExpireTimeSpan = TimeSpan.FromMinutes(5);
AccessTokenExpireTimeSpan = TimeSpan.FromMinutes(20);
SystemClock = new SystemClock();

}

public PathString AuthorizeEndpointPath { get; set; }

public PathString TokenEndpointPath { get; set; }

public IOAuthAuthorizationServerProvider Provider { get; set; }

public ISecureDataFormat<AuthenticationTicket> AuthorizationCodeFormat { get; set; }
public ISecureDataFormat<AuthenticationTicket> AccessTokenFormat { get; set; }
public ISecureDataFormat<AuthenticationTicket> RefreshTokenFormat { get; set; }

public TimeSpan AuthorizationCodeExpireTimeSpan { get; set; }

304

http://tools.ietf.org/html/rfc6749

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

public TimeSpan AccessTokenExpireTimeSpan { get; set; }

public TAuthenticationTokenProvider AuthorizationCodeProvider { get; set; }
public TAuthenticationTokenProvider AccessTokenProvider { get; set; }
public TAuthenticationTokenProvider RefreshTokenProvider { get; set; }
public bool ApplicationCanDisplayErrors { get; set; }

public ISystemClock SystemClock { get; set; }

public bool AllowInsecureHttp { get; set; }

IOAuthAuthorizationServerProvider is responsible for processing events raised by the authorization
server. Katana ships with a default implementation of I0AuthAuthorizationServerProvider called
OAuthAuthorizationServerProvider, which you can see in Listing 10-20. It is a very convenient starting point for
configuring the authorization server, as it allows you to either attach individual event handlers as Funcs or to inherit
from the class and override the relevant method directly.

Listing 10-20. Outline of OAuthAuthorizationServerProvider

public class OAuthAuthorizationServerProvider : IOAuthAuthorizationServerProvider
{
public OAuthAuthorizationServerProvider();
public Func<OAuthMatchEndpointContext, Task> OnMatchEndpoint { get; set; }
public Func<OAuthValidateClientRedirectUriContext, Task> OnValidateClientRedirectUri
{ get; set; }

public Func<OAuthValidateClientAuthenticationContext, Task> OnValidateClientAuthentication

{ get; set; }

public Func<OAuthValidateAuthorizeRequestContext, Task> OnValidateAuthorizeRequest { get; set; }
public Func<OAuthValidateTokenRequestContext, Task> OnValidateTokenRequest { get; set; }
public Func<OAuthGrantAuthorizationCodeContext, Task> OnGrantAuthorizationCode { get; set; }
public Func<OAuthGrantResourceOwnerCredentialsContext, Task> OnGrantResourceOwnerCredentials
{ get; set; }

public Func<OAuthGrantClientCredentialsContext, Task> OnGrantClientCredentials { get; set; }
public Func<OAuthGrantRefreshTokenContext, Task> OnGrantRefreshToken { get; set; }

public Func<OAuthGrantCustomExtensionContext, Task> OnGrantCustomExtension { get; set; }
public Func<OAuthAuthorizeEndpointContext, Task> OnAuthorizeEndpoint { get; set; }

public Func<OAuthTokenEndpointContext, Task> OnTokenEndpoint { get; set; }

public virtual Task MatchEndpoint(OAuthMatchEndpointContext context);

public virtual Task ValidateClientRedirectUri(OAuthValidateClientRedirectUriContext context);
public virtual Task ValidateClientAuthentication(OAuthValidateClientAuthenticationContext
context);

public virtual Task ValidateAuthorizeRequest(OAuthValidateAuthorizeRequestContext context);
public virtual Task ValidateTokenRequest(OAuthValidateTokenRequestContext context);

public virtual Task GrantAuthorizationCode(OAuthGrantAuthorizationCodeContext context);
public virtual Task GrantRefreshToken(OAuthGrantRefreshTokenContext context);

305

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

public virtual Task GrantResourceOwnerCredentials(OAuthGrantResourceOwnerCredentialsContext
context);

public virtual Task GrantClientCredentials(OAuthGrantClientCredentialsContext context)
public virtual Task GrantCustomExtension(OAuthGrantCustomExtensionContext context);

public virtual Task AuthorizeEndpoint(OAuthAuthorizeEndpointContext context);

public virtual Task TokenEndpoint(OAuthTokenEndpointContext context);

THE DEPTHS OF OAUTH

While OAuth 2.0 aims to simplify some of the concepts of OAuth 1.0, it is still a very broad and complex
authorization framework. It is far beyond the scope and format of this book to go into details of OAuth; in this
particular recipe | merely scratch the surface.

Why? There is a whole complicated security world of dealing with token providers, token types, refreshing tokens,
redirect URI validations, authorization code grants, and a lot more—which you will definitely have to deal with in
more complex OAuth usage scenarios.

To help you get going, the ASP.NET team provides an excellent, free-to-use (Apache 2 licensed), end-to-end
sample of OAuth2 with OWIN and ASP.NET Web API at
http://code.msdn.microsoft.com/OWIN-OAuth-20-Authorization-ba2b8783.

In addition to that, Badrinarayanan Lakshmiraghavan dedicated a couple of chapters in his Pro ASPNET Web
API Security book (www.apress.com/microsoft/asp-net/9781430257820) exclusively to ASP.NET Web APl and
OAuth 2.0 integration.

The Code

When working with three-legged OAuth, the resource server (consuming tokens and exposing data based on them)
and the authorization server (issues access tokens) are separate from each other, often controlled by different parties
too (i.e. a sing Twitter as authorization server).

However, in simpler scenarios, resource and authorization servers can be combined into what’s known as an
“embedded authorization server.” Listing 10-21 shows a Katana Startup class, configured to issue the tokens, use the
bearer tokens for authentication and host ASP.NET Web API at the same time.

Listing 10-21. Katana Startup Configured as OAuth Server and a Web API Server

public class Startup

{
public void Configuration(IAppBuilder app)

{

var oauthProvider = new OAuthAuthorizationServerProvider

{

OnGrantResourceOwnerCredentials = async context =>

{

//sample! validate credentials here
if (context.UserName == "filip" 8& context.Password == "test")

306

http://code.msdn.microsoft.com/OWIN-OAuth-20-Authorization-ba2b8783
http://www.apress.com/microsoft/asp-net/9781430257820

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

{
var claimsIdentity = new ClaimsIdentity(context.Options.AuthenticationType);
claimsIdentity.AddClaim(new Claim("user", context.UserName));
context.Validated(claimsIdentity);
return;
}
context.Rejected();
}s
OnValidateClientAuthentication = async context =>
{
string clientId;
string clientSecret;
//sample! validate clientId and secret here
if (context.TryGetBasicCredentials(out clientId, out clientSecret))
{
if (clientId == "filipClient" &3 clientSecret == "secretKey")
{
context.Validated();
}
}
}
};
var oauthOptions = new OAuthAuthorizationServerOptions
{
AllowInsecureHttp = true, //this is set to avoid having to setup TLS in the demo
TokenEndpointPath = new PathString("/accesstoken"),
Provider = oauthProvider
b

app.UseOAuthAuthorizationServer (oauthOptions);
app.UseOAuthBearerAuthentication(new OAuthBearerAuthenticationOptions());

var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();
app.UseWebApi(config);

}

}

In the sample, you attach two event handlers to the OAuthAuthorizationServerProvider. First is
OnValidateClientAuthentication, which is used when requesting the access token. Inside that event handler,
client ID and secret are extracted from the Authorization header (basic authentication) and validated. Then
OnGrantResourceOwnerCredentials is used to validate the credentials of the resource owner and create a concrete
ClaimsIdentity based on that. The credentials are passed in as regular application/x-www-form-urlencoded
form data.

307

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

After the authorization server has been configured, you can proceed to configure the resource server, which is
done by calling the UseOAuthBearerAuthentication method and passing in OAuthBearerAuthenticationOptions.
Similarly to the authorization server, it can also be customized to use specific token providers or have specific event
handlers attached as Funcs (i.e. to handle challenge or token validation). However, for the example in Listing 10-21,
the default settings are sufficient.

app.UseOAuthBearerAuthentication(new OAuthBearerAuthenticationOptions());

This means that connecting clients should use an Authorization header with the type Bearer, and pass in
the access token value as the rest of the header. Please note that you absolutely have to apply HTTPS (TLS or SSL)
yourself!

Now that all the pieces are in place, you can start calling and interacting with the service over the network. Since
the sample from Listing 10-21 contained a hardcoded client/secret as filipClient and secretKey, and username/
password as filip:test, these are exactly the parameters you'll need to use when requesting the token and then
accessing the protected resource. Listing 10-22 shows this process done from .NET using HttpClient.

Listing 10-22. Accessing Web API With Embedded OAuth 2.0 Server from HttpClient

var client = new HttpClient();
var authorizationHeader =
Convert.ToBase64String(Encoding.UTF8.GetBytes("filipClient:secretKey"));

//client and secret should be sent using Basic Authentication
client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Basic",

authorizationHeader);

var form = new Dictionary<string, string>

{
{"grant_type", "password"},
{"username", "filip"},
{"password", "test"}

};

var tokenResponse = await client.PostAsync("http://localhost:925/accesstoken”,
new FormUrlEncodedContent(form));

var token = await tokenResponse.Content.ReadAsAsync<Token>(new[] {new JsonMediaTypeFormatter()});

//now reset Authorization header to a Bearer token
client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", token.
AccessToken);

//this is the actual response from a secured Web API resource
var authorizedResponse = client.GetAsync("http://localhost:925/api/test");

The code should be quite easy to follow. First, a basic authentication header is set based on the client_id
and secret; this needs to have base64 format. A prepared request is then sent to the /accesstoken endpoint,
along with the form data composed of username, password, and grant_type (password). In response, an
access token is returned (by default valid for 20 minutes, since you do not specify a custom TimeSpan in the
OAuthAuthorizationServerOptions), which is then used for the next request in the Bearer scheme.

308

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

This is how you are allowed to access the protected Web API resource. Both the sample Web API resource
and the Token helper class, which is used to deserialize the responses containing the access token, are shown in
Listing 10-23. Since all OAuth configuration happens at OWIN level in Web AP], it’s enough to just decorate a
resource with AuthorizeAttribute.

Listing 10-23. Token Helper Class and a Sample Web API Resource

public class Token

{

[JsonProperty(“"access_token")]
public string AccessToken { get; set; }

[JsonProperty("token type")]
public string TokenType { get; set; }

[JsonProperty("expires_in")]
public int ExpiresIn { get; set; }

[IsonProperty("refresh token")]
public string RefreshToken { get; set; }

}

[Authorize]
public class TestController : ApiController

{
[Route("test")]

public HttpResponseMessage Get()
{

}

return Request.CreateResponse(HttpStatusCode.OK, "hello from a secured resource!");

Even though the sample here used HttpClient, the whole process of accessing your secured Web API resource
through an embedded OAuth 2.0 server is obviously compatible with any HTTP-capable client.

Tip For more sophisticated scenarios, it is definitely recommended to use an existing OAuth2 client library, such
as Thinktecture.IdentityModel.Client, rather than go through the cumbersome process of manually dealing
with HttpClient.

10-7. Safely Access Current IPrincipal
Problem

You would like to access the current IPrincipal object from various components of your Web API pipeline, in a safe
and unit test-friendly way.

309

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Solution

The recommended way of accessing the current IPrincipal is through the RequestContext object, which is
available from every instance of HttpRequestMessage. This is contrary to the traditional approach of using Thread.
CurrentPrincipal in self-hosted or HttpContext.Current.User in web-hosted scenarios.

var requestContext = request.GetRequestContext();
//use requestContext.Principal

There are a number of benefits here. When doing asynchronous work, the thread context can easily switch and
there is no guarantee that using Thread.CurrentPrincipal will synchronize correctly. Moreover, the static nature
of Thread.CurrentPrincipal or HttpContext.Current.User introduces unnecessary complexity when it comes to
maintaining and testing your code.

How It Works

HttpRequestContext was introduced into ASP.NET Web API 2 to provide a more organized approach to the request-
specific data and metadata that was normally stored inside of the request Properties dictionary (i.e. flag whether the
request is local), in static objects (i.e. IPrincipal on the Thread.CurrentPrincipal), or was disconnected from the
request instance (i.e. UrlHelper) at all.

HttpRequestContext, shown in Listing 10-24, is a POCO and does not provide any behavior. All of its properties
are explicitly hydrated at various stages of the Web API pipeline. The comments used in the listing come directly from
the ASP.NET Web API source, and have been left here as they provide a good insight into the use of each property.

Listing 10-24. Definition of HttpRequestContext

public class HttpRequestContext

{
public HttpRequestContext()
{
// This is constructor is available to allow placing breakpoints on //construction.
}

/// <summary>Gets or sets the client certificate.</summary>
public virtual X509Certificate2 ClientCertificate { get; set; }

/// <summary>Gets or sets the configuration.</summary>
public virtual HttpConfiguration Configuration { get; set; }

/// <summary>

/// Gets or sets a value indicating whether error details, such as //exception messages and
stack traces,

/// should be included in the response for this request.

/// </summary>

public virtual bool IncludeErrorDetail { get; set; }

/// <summary>Gets or sets a value indicating whether the request //originates from a local

address.</summary>
public virtual bool Islocal { get; set; }

310

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

/// <summary>Gets or sets the principal.</summary>
public virtual IPrincipal Principal { get; set; }

/// <summary>Gets or sets the route data.</summary>
public virtual IHttpRouteData RouteData { get; set; }

/// <summary>Gets or sets the factory used to generate URLs to other APIs.</summary>
public virtual UrlHelper Url { get; set; }

/// <summary>Gets or sets the virtual path root.</summary>
public virtual string VirtualPathRoot { get; set; }

From the developer’s standpoint, the most important security information about HttpRequestContext is
that the IPrincipal is guaranteed to flow across the threads in case context switching happens, such as when an
asynchronous operation starts on one thread and completes on another.

An instance of the HttpRequestContext is actually held inside the Properties dictionary of the
HttpRequestMessage, under HttpPropertyKeys.RequestContextKey key. As a consequence, you will not be
surprised to hear that the GetRequestContext method, used to obtain the HttpRequestContext from the current
request, is simply an extension method that retrieves the context instance from the request’s Properties. A similar
SetRequestContext extension method is publicly available too, and is used by the framework to initially set the
context on the request. Additionally, it’s perfect to be used in unit testing scenarios where you might want to mock
some of the objects carried by the HttpRequestContext, like in your specific case, an IPrincipal.

Additionally, if you are working with IAuthenticationFilter in the AuthenticateAsync method, you will
have access to HttpAuthenticationContext (shown in Listing 10-25). It also exposes an IPrincipal, through a
Principal property. When building a custom authentication solution using IAuthenticationFilter, you only
need to set the Principal on the HttpAuthenticationContext; the framework will ensure that it gets synced to the
HttpRequestContext automatically.

Listing 10-25. Overview of the HttpAuthenticationContext

public class HttpAuthenticationContext

{
public HttpAuthenticationContext(HttpActionContext actionContext, IPrincipal principal);
public HttpActionContext ActionContext { get; private set; }
public IPrincipal Principal { get; set; }
public IHttpActionResult ErrorResult { get; set; }
public HttpRequestMessage Request {get; }
}

Finally, the base ApiController exposes a User property, which also returns the current IPrincipal, so
whenever you are working in the controller, you can use that to interact with the current IPrincipal. However, under
the hood the property is simply a shortcut to HttpRequestContext too, as shown in Listing 10-26.

Listing 10-26. User Property on the ApiController

public IPrincipal User

{
get { return RequestContext.Principal; }
set { RequestContext.Principal = value; }

311

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

The Code

Listing 10-27 shows accessing the HttpRequestContext from a simple Basic authentication MessageHandler. The code
extracts user name and password from the Authorization header and creates a new ClaimsPrincipal based on that.
Then, the principal object is set on the RequestContext, which is enough to complete the authentication process. The
big advantage of working with IPrincipal this way is that the message handler can now be easily unit tested because
RequestContext can be stubbed.

Listing 10-27. A Sample Message Handler, Setting IPrincipal on the HttpRequestContext

public class BasicAuthHandler : DelegatingHandler

{

312

private const string BasicAuthResponseHeaderValue = "Basic";
private const string Realm = "Apress";

protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
CancellationToken cancellationToken)

{

bool identified = false;
if (request.Headers.Authorization != null && string.Equals(request.Headers.Authorization.
Scheme, BasicAuthResponseHeaderValue, StringComparison.CurrentCultureIgnoreCase))
{
var credentials = Encoding.UTF8.GetString(Convert.FromBase64String(request.Headers.
Authorization.Parameter));
var user = credentials.Split(':")[0].Trim();
var pwd = credentials.Split(':')[1].Trim();

//validate username and password here and set identified flag
//omitted for brevity

if (identified)

{
var identity = new ClaimsIdentity(new[] {new Claim(ClaimTypes.Name, user)},
BasicAuthResponseHeaderValue);
request.GetRequestContext().Principal = new ClaimsPrincipal(new[] { identity });
}
}
if (lidentified)
{
var unauthorizedResponse = request.CreateResponse(HttpStatusCode.Unauthorized);
unauthorizedResponse.Headers.WwwAuthenticate.Add(new AuthenticationHeaderValue(BasicAuth
ResponseHeaderValue, Realm));
return Task.FromResult(unauthorizedResponse);
}

return base.SendAsync(request, cancellationToken);

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

Note The Basic authentication implementation used here is not complete and is shown purely to illustrate working
with HttpRequestContext and IPrincipal. Please refer to Recipe 10-3 for a detailed discussion on adding Basic
authentication support to your Web API.

Once the IPrincipal is set, you can access it through the HttpRequestContext. The example is shown in
Listing 10-28, where three different approaches are shown, all going through HttpRequestContext.

Listing 10-28. Accessing IPrincipal from the Controller

[Authorize]
public class TestController : ApiController
{
public HttpResponseMessage Get()
{
//all approaches are equally valid
var user = Request.GetRequestContext().Principal;
var user = RequestContext.Principal;
var user = User;
//rest of the action omitted for brevity
}

10-8. Remove ASP.NET Web API Server Footprint
Problem

You want to remove all of the extra headers injected by the server on which your ASP.NET Web API application is
running, such as Server, X-Powered-By, or X-AspNet-Version.

Solution

The behavior of the default headers is different when running Web API on IIS (web hosting) and on HttpListener
(self-hosting and OWIN self-hosting), so they need to be tackled separately. When hosting on top of IIS, you have to
deal with all three of the headers, while HttpListener only issues an extra Server header.

On IIS, you can solve this issue in a proactive or in a reactive way. In a reactive approach, you can simply add an
IHttpModule that will pluck the unnecessary headers just prior to the response being sent to the client. In a proactive
approach, you need to modify the IIS settings and your web. config to ensure none of the extra headers are issued at all.

In HttpListener scenarios, there is no way to plug in a component like IHttpModule, therefore only a proactive
approach is viable. However, since there is only a single header to deal with, it’s relatively easy to do via a registry
configuration, since it can only be done on a per-machine basis, not per-project basis.

How It Works

While the default ASP.NET headers have no value for you as the developer of the application, they are used by
Microsoft to measure the spread and outreach of ASP.NET-based solutions. This can then be used by them to quantify
the severity of potential security bugs or in general provide feedback of the adoption of the platform.

313

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

On the other hand, by removing the default headers, you are making it more difficult for the potential attacker to
identify the technology on which your API is running. While disguising the response headers is effectively a so-called
“security by obscurity,” and is definitely not enough to protect you from attackers, it is absolutely a good security
practice to remove everything that you do not need (in this case all of the excessive headers that are not directly
required by your application).

The headers are injected into the HTTP response by the following components:

e Server: Added by IIS (web host, value is Microsoft-IIS/{version}) or HTTP.SYS (any host
using HttplListener, value isMicrosoft-HTTPAPI/2.0)

e X-AspNet-Version: Added by System.Web. Since self-hosted Web API doesn’t reference
System.Web, the problem does not exist there

e X-Powered-By: Added by IIS

The Code

Let’s walk through the necessary steps required to disable each of the headers.

Server

When running on IIS, it is not possible to remove the Server header through any configuration setting; instead,
it has to be done reactively, by stripping the header before it is sent to the client. This can be done via the
Application_PreSendRequestHeaders event in the Global.asax, as shown in Listing 10-29, or through a custom
IHttpModule, which will be discussed later.

Listing 10-29. Stripping Away a Server Header from IIS-based Web Applications

protected void Application PreSendRequestHeaders(object sender, EventArgs e)

{
}

HttpContext.Current.Response.Headers.Remove("Server");

To disable the Server header issued by HTTP.SYS, you will need to modify the registry: add a DWORD entry
DisableServerHeader with value 1 to HKLM\SYSTEM\CurrentControlSet\Services\HTTP\Parameters. You can do it
using the standard regedit GUI tool, or from a PowerShell command, as shown:

reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\HTTP\Parameters /v
DisableServerHeader /t REG_DWORD /d 00000001

A reboot is required for the change to take effect.

X-Powered-By

This can be removed from your responses by navigating to the HTTP Response Headers setting of your web site in the
IIS Manager. This is shown in Figure 10-4.

314

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

@ HTTP Response Headers

Use this feature to configure HTTP headers that are added to responses from the Web server.

Group by: No Grouping v

Name Value Entry Type

| X-Powered-By ASP.NET Inherited
Add..

Set Common Headers...

Edit...
K Remove
® Hep

Figure 10-4. Removing the X-Powered-By Header

Alternatively, you can axe this particular header through a web.config file under the
<system.webServer />section:

<httpProtocol>
<customHeaders>
<remove name="X-Powered-By" />
</customHeaders>
</httpProtocol>

X-AspNet-Version

This header can be removed by adding the following configuration entry to your web.config/machine. config file,
under <system.Web />section:

<httpRuntime enableVersionHeader="false"/>

All Headers Through IHttpModule

An THttpModule that clears all of the unnecessary headers is shown in Listing 10-30. You can simply register it against
your IIS-based application and forget about any other extra configuration. IIS and System.Web will still keep issuing

the headers, but they will always get cleared prior to reaching the client. This approach is useful when you have no
direct access to IIS Manager.

Listing 10-30. THttpModule Responsible for Removing Default Headers
public class ClearHeaderModule : IHttpModule

{
private static readonly string[] Headers = new string[3]
{
"Server",
"X-AspNet-Version",
"X-Powered-By",
};

315

CHAPTER 10 © SECURING AN ASP.NET WEB API SERVICE

public void Init(HttpApplication context)
{

}

context.PreSendRequestHeaders += OnPreSendRequestHeaders;

static void OnPreSendRequestHeaders(object sender, EventArgs e)

{

if (HttpContext.Current == null) return;

for (var i = 0; 1 < 3; i++)

{
}

HttpContext.Current.Response.Headers.Remove(Headers[i]);

}

public void Dispose() { }

You register this module same way as any other IHttpModule in ASP.NET, in web.config, under

<system.webServer />:

<modules>

<add name="ClearHeaderModule" type="{namespace}.ClearHeaderModule, {assembly name}"/>

</modules>

Tip

(www.iis.net/downloads/microsoft/url-rewrite).

316

In addition to the methods discussed in this recipe, you can also disable the default headers using a
combination of Microsoft’s URLScan tool (www.iis.net/downloads/microsoft/urlscan) and URLRewrite tool

http://www.iis.net/downloads/microsoft/urlscan
http://www.iis.net/downloads/microsoft/url-rewrite

CHAPTER 11

Testing Web API Services

This chapter covers testing your ASP.NET Web API service. It will take a comprehensive look at both isolated unit
testing of the individual Web API components and at broadly scoped end-to-end integration tests.
You will learn how to do the following:

e Test controllers, message handlers, filters, and formatters (Recipes 11-1, 11-2, 11-3, and 11-4)
e Take advantage of the testability benefits of IHttpActionResult (Recipe 11-5)

e Test Web API routes (Recipe 11-6)

e Run Web API in memory to perform complex integration tests (Recipes 11-7 and 11-8)

All the code samples used in this chapter rely on xUnit as the testing framework and Moq as a mocking
framework, but obviously you can easily apply the techniques discussed here to the test suite of your choice.

11-1. Unit Test ASP.NET Web API Controllers
Problem

You would like to unit test the controllers used in your Web API.

Solution

ASP.NET Web API allows unit testing of the controllers; however, depending on the complexity and amount of
contextual information you use in the actions, you will need to perform the appropriate controller setup beforehand.
Listing 11-1 shows a basic controller testing infrastructure.

Listing 11-1. A General Controller Test Setup

[Fact]
public async void WhenItemIsPostedResponseShouldBe201AndLocationHeaderShouldBeSet() {
var controller = new ItemsController()

{
Configuration = new HttpConfiguration(),
Request = new HttpRequestMessage
{
Method = HttpMethod.Post,
RequestUri = new Uri("http://apress.com/items")
}
};

317

http://apress.com/items

CHAPTER 11 © TESTING WEB API SERVICES

//depending on the context and complexity of your action
//setup controller.Configuration

//setup controller.Request

//setup controller.RequestContext

var result = await controller.Post(new Item());

//assert

How It Works

In ASP.NET Web AP]I, controllers are the focal point of a rich processing pipeline, and their isolation for unit testing
has not always been that straightforward.

The difficulty and complexity of controller unit testing in Web API has evolved considerably since the original
release of the framework, where you had to understand lots of internal details of the controller execution pipeline
as well as be familiar with lower-level objects such as HttpControllerContext in order to set up your controllers for
testing. From version 2 of the framework, testing has been much easier, and while the base controller class in Web AP,
ApiController, still relies heavily on lots of dependencies such as the Ht tpRequestMessage, HttpRequestContext, and
HttpConfiguration, those can normally be relatively easily configured in order to allow the unit testability of your actions.
All of them are exposed as public properties on the ApiController and can be set in the “arrange” part of your test.

Tip Itis advisable to keep controllers as lean as possible, and only let them act as a bridge between your HTTP
endpoint and the business layer. As a result, when unit testing controllers, you should only have to focus on verifying most
basic operations, rather than any sophisticated logic.

The Code

Let’s have a look at testing a sample controller from Listing 11-2, one that allows you to get a resource by ID and to add
one to the underlying repository.

Listing 11-2. Sample Controller to be Tested

public class ItemsController : ApiController

{

private readonly IItemService _itemService;

public ItemsController(IItemService itemService)

{
}

[Route("items/{id:int}", Name = "ItemById")]
public async Task<Item> Get(int id)
{

_itemService = itemService;

var result = await _itemService.GetById(id);
return result;

318

practice. Instead, the controller only focuses on the most fundamental task, providing an HTTP gateway and doing

CHAPTER 11 TESTING WEB API SERVICES

[Route("items")]
public async Task<HttpResponseMessage> Post(Item item)

{

ModelState);

if (!ModelState.IsValid) return Request.CreateErrorResponse(HttpStatusCode.BadRequest,

await _itemService.SaveAsync(item);
var response = new HttpResponseMessage(HttpStatusCode.Created);

response.Headers.Location = new Uri(Url.Link("ItemById", new { id = item.Id }));

The core logic invoked through these API endpoints is delegated to a separate IItemsService, which is a good

basic sanity checks.

To test the Post method, you need to set up the HttpRequestContext and its RouteData, as the action uses the

UrlHelper to generate a link, which in turn relies on RouteData. This is shown in Listing 11-3.

Listing 11-3. Unit Testing a Fairly Complex Post Action

[Fact]
public async void WhenItemIsPostedResponseShouldBe201AndLocationHeaderShouldBeSet ()

{

var item = new Item
{
Id = 1,
Name = "Filip"
};
var service = new Mock<IItemService>().Object;
var controller = new ItemsController(service)

{
Configuration = new HttpConfiguration(),
Request = new HttpRequestMessage
{
Method = HttpMethod.Post,
RequestUri = new Uri("http://localhost/items")
}
};

controller.Configuration.MapHttpAttributeRoutes();
controller.Configuration.EnsureInitialized();
controller.RequestContext.RouteData = new HttpRouteData(

new HttpRoute(), new HttpRouteValueDictionary { { "controller", "Items" } });

var result = await controller.Post(item);

Assert.Equal(HttpStatusCode.Created, result.StatusCode);
Assert.Equal("http://localhost/items/1", result.Headers.lLocation.AbsoluteUri);

319

CHAPTER 11 © TESTING WEB API SERVICES

Tip InWeb API 2 it is also possible to mock IUriHelper directly, instead of relying on RouteData. See Recipe 11-5
for more details.

In order to enable the routes on the tested controller, you either have to add them manually using the
MapHttpRoute method (the same way as you would deal with centralized routes), or if, as in this case, your controller
uses attribute routing, you have to call two methods on the HttpConfiguration in this particular order:

controller.Configuration.MapHttpAttributeRoutes();
controller.Configuration.EnsureInitialized();

This code makes sure the routes from the attributes have been initialized correctly. If you don’t add the relevant
routes, the test code will throw an exception, complaining that “the route ItemById cannot be found.”

You also have a failure path in the controller; if the Mode1State is invalid, you should throw an
HttpResponseException and respond to the user with HTTP status code 400. The easiest way to test if this behavior is
correct is to configure ModelState by hand: add an error into it manually. Normally, ModelState only gets populated
by the Web API when performing model binding, which is not happening in unit tests, as you call the controller
directly. Testing Mode1State is shown in Listing 11-4.

Listing 11-4. Unit Testing the ModelState-driven Exception Path

[Fact]
public void WhenItemIsPostedAndIsInvalidThrowsBadRequest()
{
var item = new Item
{
Id =1
};

var service = new Mock<IItemService>().Object;
var controller = new ItemsController(service)

{
Configuration = new HttpConfiguration(),
Request = new HttpRequestMessage
{
Method = HttpMethod.Post,
RequestUri = new Uri("http://localhost/items")
}
b

controller.ModelState.AddModelError ("Name", "Name is required");

var ex = AssertEx.TaskThrows<HttpResponseException>(async () => await controller.Post(item));
Assert.Equal(HttpStatusCode.BadRequest, ex.Response.StatusCode);

In Listing 11-4, the ModelState will trigger the failure path and throw an Exception. You can take advantage
of the terrific AssertEx library from NuGet, which, contrary to default xUnit assertions, allows you to assert
using an async lambda (since your action is async). As everything is awaited, there is no need to unwrap the
HttpResponseException from an AggregateException anymore.

320

CHAPTER 11 TESTING WEB API SERVICES

Unit testing of the GetById action (Listing 11-5) is very simple and boils down to verifying if the underlying
service has been called, and in case it returns null, that the Exception representing a 404 HTTP response has been
thrown. Interestingly, since the code inside that action does not rely on any Web API context (such as current request
or route information), you can skip that part in your arrange altogether and test the action as if it was a regular method
on a typical .NET class.

Listing 11-5. Unit Testing GetByld Action

[Fact]
public async void WhenGetByIdIsCalledUnderlyingServiceIsCalled()
{
var item = new Item {Id = 1, Name = "Filip"};
var service = new Mock<IItemService>();
service.Setup(x => x.GetById(1)).Returns(Task.FromResult(item));
var controller = new ItemsController(service.Object);
var result = await controller.Get(1);

Assert.Equal(item, result);

}
[Fact]
public void WhenIdCalledByGetByIdIsNotFound404IsThrown()
{
var service = new Mock<IItemService>();
service.Setup(x => x.GetById(1)).Returns(Task.FromResult<Item>(null));
var controller = new ItemsController(service.Object);
var ex = AssertEx.TaskThrows<HttpResponseException>(async () => await controller.Get(1));
Assert.Equal(HttpStatusCode.NotFound, ex.Response.StatusCode);
}

11-2. Unit Test Message Handlers
Problem

You would like to unit test the message handlers used in your ASP.NET Web API application.

Solution

ASP.NET Web API message handlers cannot be called directly in the unit tests as their only member, SendAsync, is not
public. However, the System.Net.Http library contains an HttpMessageInvoker class, which can be used to invoke
the handler. It allows you to pass in a handler through the constructor and itself exposes a SendAsync method, which
calls SendAsync on the wrapped handler.

var handler = new MyMessageHandler();

var invoker = new HttpMessageInvoker(handler);
var result = await invoker.SendAsync(new HttpRequestMessage(), CancellationToken.None);

321

CHAPTER 11 © TESTING WEB API SERVICES

Tip The popular HttpClient is actually a subclass extending the HttpMessageInvoker. As a result, you can also use
HttpMessageInvoker to perform integration testing, as discussed in detail in Recipe 11-7.

How It Works

The signature of HttpMessageHandler is shown in Listing 11-6.

Listing 11-6. Definition of HttpMessageHandler

public abstract class HttpMessageHandler

{
protected internal abstract Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
CancellationToken cancellationToken);

While in Web API you would normally extend the DelegatingHandler (a subclass of HttpMessageHandler,
providing default pipelining behavior), rather than implement HttpMessageHandler, either way the SendAsync will
not be public.

The reason why HttpMessageInvoker is able to call into that method is that its access modifier is protected
internal, and all three classes (HttpMessageInvoker, DelegatingHandler, and HttpMessageHandler) are defined in
the same System.Net.Http assembly. As a result, the invoker, being a friend class, is free to call the SendAsync method
whenever it is required.

Web API itself heavily relies on HttpMessageInvoker to facilitate the pipeline functionality and message handler
chaining. What is also worth mentioning is that in unit testing Web API-specific Ht tpMessageHandlers, such as
HttpServer or HttpRoutingDispatcher, HttpMessageInvoker is used by the ASP.NET Web API team in the same
manner as described in this recipe.

The Code

Let’s take a simple example of the logging message handler from Listing 11-7.

Listing 11-7. Message Handler to be Unit Tested

public class LoggingHandler : DelegatingHandler

{
public ILoggingService LoggingService { get; set; }
protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
CancellationToken cancellationToken)
{
var loggingService = LoggingService ?? request.GetDependencyScope().GetService
(typeof (ILoggingService)) as ILoggingService;
if (loggingService != null)
{
loggingService.Log(request.RequestUri.ToString());
}
return base.SendAsync(request, cancellationToken);
}
}

322

CHAPTER 11 TESTING WEB API SERVICES

In this handler, you probably want to verify that the logger is invoked with the relevant request URI. The message
handler will try to resolve an ILoggingService from the request’s DependencyScope (see Recipe 10-4 for more details);
as a consequence, it’s a good idea to keep the service public with a setter, so that you can easily mock it in the unit test.

Since it’s already been mentioned that HttpMessageInvoker is the go-to-guy for unit testing message handlers,
let’s write the test. See Listing 11-8.

Listing 11-8. Unit Test for a Message Handler

[Fact]
public async void WhenCalledShouldLogTheRequestUrl()

{

var mockLogger = new Mock<ILoggingService>();
var handler = new LoggingHandler

{
};

LoggingService = mockLogger.Object

var invoker = new HttpMessageInvoker(handler);
await invoker.SendAsync(new HttpRequestMessage(HttpMethod.Get,
new Uri("http://apress.com/resource")), new CancellationToken());

mockLogger.Verify(x => x.Log("http://apress.com/resource"), Times.Once);

In this particular example, the response message is not interesting for us, but in case the message handler did
some more sophisticated processing, the awaited output of the SendAsync method could be read into a variable and
asserted accordingly.

In case your message handler does not expose its dependencies in the form of a public, settable property, you
can provide a mock of an IDependencyResolver and pass it into the handler through the HttpRequestMessage and the
Properties dictionary, under HttpPropertyKeys.DependencyScope key.

var mockResolver = new Mock<IDependencyResolver>();
//setup resolver
request.Properties[HttpPropertyKeys.DependencyScope] = mockResolver.Object;

Note An alternative, less elegant way of unit testing message handlers is to subclass your handler so that the fake
child class can have access to the SendAsync method.

11-3. Unit Test Action Filters
Problem

You would like to unit test the action filters used in your Web APIL.

Solution

Testing action filters in Asp.NET Web API is relatively easy, as they can be invoked directly (no need to use a bridge
class like HttpActionInvoker, discussed in Recipe 11-2).

323

http://apress.com/resource
http://apress.com/resource

CHAPTER 11 © TESTING WEB API SERVICES

However, action filters operate on HttpActionContext and HttpActionExecutedContext, and, depending on
what your filter is doing and which context information it needs access to, those objects have to be properly set up in
order for tests to execute successfully.

Similarly, in case you want to assert the modifications that the filter performed on the HttpResponseMessage
object, it’s the instance that is set on the HttpActionContext/HttpActionExecutedContext that needs to be
inspected. All filter operations are void/Task returning and do not yield any result.

How It Works

Your action filter can perform a wide array of different tasks. Depending on what you are trying to test, some of the
properties of the HttpActionContext need to be hydrated. The most common places to go are the Request and
RequestContext properties.

HttpActionExecutedContext is a post-processing wrapper around HttpActionContext (Listing 11-9), so as in
former case, it’s the HttpActionContext that needs to be set up.

Listing 11-9. Definition of HttpActionContext and HttpActionExecutedContext

public class HttpActionContext

{
public HttpActionContext();
public HttpActionContext(HttpControllerContext controllerContext,
HttpActionDescriptor actionDescriptor);
public Dictionary<string, object> ActionArguments { get; }
public HttpActionDescriptor ActionDescriptor { get; set; }
public HttpControllerContext ControllerContext { get; set; }
public ModelStateDictionary ModelState { get; }
public HttpRequestMessage Request { get; }
public HttpRequestContext RequestContext { get; }
public HttpResponseMessage Response { get; set; }

}

public class HttpActionExecutedContext
{

public HttpActionExecutedContext(HttpActionContext actionContext, Exception exception);
public HttpActionContext ActionContext { get; set; }

public Exception Exception { get; set; }

public HttpResponseMessage Response { get; set; }

When processing a request, Web API will group all filters it finds on your actions into four groups:
e Authorization filters
e Authentication filters
e Action filters
e Exception filters

While you can test your filters by calling their relevant public methods directly, Web API internally uses a
specialized private ActionInvoker to invoke the action on the controller together with the filter pipeline.

324

CHAPTER 11 TESTING WEB API SERVICES

All groups are linked together through a chain of IHttpActionResults. For example, action filters are wrapped
in an ActionFilterResult, which in turn wraps around regular action invocation, and is itself wrapped by an
AuthorizationFilterResult or AuthenticationFilterResult.

The Code

Let’s imagine that you have an action filter in your application that sets the Cache-Control header on the responses
that you'd like to be cached on the client side. The implementation used here (Listing 11-10) is trivial and doesn’t do
much in terms of conforming well to HTTP caching standards, but it’s a useful study case nonetheless.

Listing 11-10. Sample Action Filter to be Unit Tested
public class CacheAttribute : ActionFilterAttribute

{
public int ClientTimeSpan { get; set; }
public override void OnActionExecuted(HttpActionExecutedContext actionExecutedContext)
{
if (actionExecutedContext.Response.StatusCode >=HttpStatusCode.InternalServerError)
{
return;
}
var cachecontrol = new CacheControlHeaderValue
{
MaxAge = TimeSpan.FromSeconds(ClientTimeSpan),
MustRevalidate = true,
Public = true
};
actionExecutedContext.Response.Headers.CacheControl = cachecontrol;
}
}

The filter is applying an instance of CacheControlHeaderValue to the response object’s headers, but only if the
response status code is not a 5xx error. The rationale here is that success responses (2xx), redirects (3xx), and client
side errors (4xx) could be cached, but server side errors shouldn't.

Note According to RFC2616, there is nothing wrong with caching error responses (4xx, 5xx). It is up to you, the
developer, to decide whether you want to treat status codes higher or equal than 500 as exceptional circumstances that
the client should not be expecting and should always try to revalidate.

To unit test this functionality, you need to appropriately construct the HttpActionExecutedContext. Since it
takes HttpActionContext through the constructor, you will have to pass that one in too.

In the first test, shown in Listing 11-11, you can verify if the cache control is indeed not set in case of an error
(5xx) from the action, while the second test checks if the cache control is equivalent to the expected values.

325

CHAPTER 11 © TESTING WEB API SERVICES

Listing 11-11. Unit Tests for the Action Filter

[Fact]
public void WhenActionErrorsOutShouldNotCache()

{

var attribute = new CacheAttribute();
var executedContext = new HttpActionExecutedContext(new HttpActionContext

{
Response = new HttpResponseMessage (HttpStatusCode.InternalServerError)
}» null);

attribute.OnActionExecuted(executedContext);

Assert.Null(executedContext.Response.Headers.CacheControl);

}
[Fact]
public void WhenActionIsSuccessfulRelevantCacheControlIsSet()
{
var attribute = new CacheAttribute {ClientTimeSpan = 100};
var executedContext = new HttpActionExecutedContext(new HttpActionContext
{
Response = new HttpResponseMessage(HttpStatusCode.OK)
}, null);
attribute.OnActionExecuted(executedContext);
Assert.Equal(TimeSpan.FromSeconds(100), executedContext.Response.Headers.CacheControl.MaxAge);
Assert.Equal(true, executedContext.Response.Headers.CacheControl.Public);
Assert.Equal(true, executedContext.Response.Headers.CacheControl.MustRevalidate);
}

11-4. Unit Test Formatters
Problem

You have written a custom MediaTypeFormatter and would like to write some unit tests for it.

Solution

The quick way to unit test a formatter is to use ObjectContent<T> (from ASP.NET Web API's
System.Net.Http.Formatting library) as a helper class; its constructor allows you to pass in an object instance and a
relevant formatter. This gives you an opportunity to verify if the given object can be serialized with your formatter and
whether the content headers are set correctly. Moreover, using the HttpContent ReadAsAsync<T> extension method
(HttpContentExtensions, from the same System.Net.Http.Formatting library), you can verify if the deserialization
process can happen too.

Alternatively, you can also test in a more traditional, and arguably more elegant, way by invoking the relevant
methods and checking properties on the formatter itself. However, to invoke the critical WriteToStreamAsync and
ReadFromStreamAsync methods, you will need to mock the TransportContext and IFormatterLogger, which are
required by the respective method signatures.

326

CHAPTER 11 TESTING WEB API SERVICES

How It Works

ObjectContent’s constructor will test for you whether the Type passed in can be serialized with the formatter
(internally calling CanWriteType on that formatter). It will also invoke the formatter’s SetDefaultContentHeaders
method to set appropriate headers. The constructor (Listing 11-12) will not perform any actual serialization; this is
done through the SerializeToStreamAsync on the HttpContent later in the pipeline.

Listing 11-12. The Constructor of ObjectContent and the Bits Useful in Testing Formatters

public ObjectContent(Type type, object value, MediaTypeFormatter formatter,
MediaTypeHeaderValue mediaType)

{
if (type == null)
{

throw Error.ArgumentNull("type");

}
if (formatter == null)

{
}

if (!formatter.CanWiriteType(type))
{

throw Error.ArgumentNull("formatter");

throw Error.InvalidOperation(Properties.Resources.ObjectContent FormatterCannotWriteType,
formatter.GetType().FullName, type.Name);

}

_formatter = formatter;
ObjectType = type;

VerifyAndSetObject(value);
_formatter.SetDefaultContentHeaders(type, Headers, mediaType);

Conversely, the ReadAsAsync<T> method of the HttpContentExtensions will internally check which of the
formatters that you passed can read a given Type (by calling the formatter’s CanReadType).

public static Task<T> ReadAsAsync<T>(this HttpContent content,
IEnumerable<MediaTypeFormatter> formatters)

The Code

Let’s write some unit tests for the Protocol Buffers formatter that’s part of the WebApiContrib project (it works great,
but itself does not have any unit tests!). Two major paths for unit testing a formatter were already mentioned, but
there’s nothing to stop you from using both of the approaches here, instead of sticking to only one of them.

In order for Types to be serializable with Protobuf-net (which is the core library powering the
ProtoBufFormatter), the Type needs to be either registered with the RuntimeTypeModel or decorated with relevant
attributes, [ProtoContract] or [DataContract], along with an ordering property for each member. For the sake of this
example, let’s use two items, one that can be serialized and the other that cannot. This is shown in Listing 11-13.

327

CHAPTER 11 © TESTING WEB API SERVICES

Listing 11-13. Sample Types Used to Test the Formatter

[ProtoContract]
public class Item
{
[ProtoMember(1)]
public int Id { get; set; }
[ProtoMember(2)]
public string Name { get; set; }
}
public class EvilItem
{
public int Id { get; set; }
public string Name { get; set; }
}

Testing Using ObjectContent<T>

The sample from Listing 11-14 utilizes ObjectContent and the ReadAsAsync extension. By relying on ObjectContent,
you can easily verify if the content has been set or if the exception has been thrown (unsupported Type).

Listing 11-14. Verifying if Serialization Is Possible Using ObjectContent

[Fact]
public void WhenInvokedObjectContentShouldNotThrow()
{
var item = new Item {Id = 1, Name = "Filip"};
Assert.DoesNotThrow(() => new ObjectContent<Item>(item, new ProtoBufFormatter()));

}

[Fact]

public void WhenInvokedWithUnsupportedTypeObjectContentShouldThrow()

{
var item = new EvilItem { Id = 1, Name = "Filip" };
Assert.Throws<InvalidOperationException>(() => new ObjectContent<EvilItem>(item,
new ProtoBufFormatter()));

You can also use ObjectContent to check if the headers on the HttpContent have been set correctly and if
the HttpContent serialized with the formatter can be also deserialized with the formatter; this is done using the
ReadAsAsync extension method. It normally takes in an IEnumerable<MediaTypeFormatter>, so in this case you can
simply pass in a single item array with the formatter under test. This is shown in Listing 11-15.

Listing 11-15. Verifying Content Headers and Deserializing Type Using ObjectContnent and ReadAsAsync

[Fact]
public void WhenInvokedContentHeadersShouldBeSetCorrectly()

{
var item = new Item { Id = 1, Name = "Filip" };
var content = new ObjectContent<Item>(item, new ProtoBufFormatter());

Assert.Equal("application/x-protobuf", content.Headers.ContentType.MediaType);

328

CHAPTER 11 TESTING WEB API SERVICES

[Fact]
public async void WhenUsedToDeserializeShouldCreateCorrectObject()
{

var formatter = new ProtoBufFormatter();

var item = new Item { Id = 1, Name = "Filip" };

var content = new ObjectContent<Item>(item, formatter);

var deserializedItem = await content.ReadAsAsync<Item>(new[] {formatter});
Assert.Same(item, deserializedItem);

Traditional Unit Testing

In a more traditional approach to testing the formatter, you can call each of its methods individually. Verifying
whether a Type can be written/read is done by calling the CanReadType and CanWriteType methods, without any extra
formatter setup. This is shown in Listing 11-16.

Listing 11-16. Testing CanReadType and CanWriteType

[Fact]
public void WhenCallingCanReadShouldNotBeAbleToReadTypesItDoesNotUnderstand()
{
var formatter = new ProtoBufFormatter();
var canRead = formatter.CanReadType(typeof (EvilItem));
Assert.False(canRead);

}

[Fact]
public void WhenCallingCanWriteShouldNotBeAbleToWriteTypesItDoesNotUnderstand()
{
var formatter = new ProtoBufFormatter();
var canWrite = formatter.CanWriteType(typeof(EvilItem));
Assert.False(canWrite);

}
[Fact]
public void WhenCallingCanReadShouldBeAbleToReadTypesItUnderstands()
{
var formatter = new ProtoBufFormatter();
var canRead = formatter.CanReadType(typeof(Item));
Assert.True(canRead);
}
[Fact]
public void WhenCallingCanWriteShouldBeAbleToWriteTypesItUnderstands()
{
var formatter = new ProtoBufFormatter();
var canWrite = formatter.CanWriteType(typeof(Item));
Assert.True(canWrite);
}

329

CHAPTER 11 © TESTING WEB API SERVICES

In order to test the actual serialization process, you need to create an empty MemoryStream to which the
formatter will write its output, and pass that stream to WriteToStreamAsync, along with an object instance that you
want to be processed by the formatter. This is equivalent to ASP.NET Web API writing to a response stream. You
can then try to deserialize the object from the MemoryStream using the Protobuf-net serializer directly (no need to
go through the formatter anymore), and compare to the original instance; they should be identical. Additionally,
WriteToStreamAsync needs a TransportContext that can be mocked.

On the opposite end of the spectrum, when testing ReadFromStreamAsync, you simply reverse the operations
order (Listing 11-17): serialize a test object instance to a MemoryStream using Protobuf-net directly, and pass in the
hydrated MemoryStream to the ReadFromStreamAsync, which has a return type of object and should be casted and
compared to the original instance. As before, there is an extra parameter that needs mocking, IFormatterLogger.

Listing 11-17. Testing ReadFromStreamAsync and WriteToStreamAsync

[Fact]
public async void WhenWritingToStreamShouldSuccessfullyComplete()

{

var formatter = new ProtoBufFormatter();
var item = new Item { Id = 1, Name = "Filip" };

var ms = new MemoryStream();
await formatter.WriteToStreamAsync(typeof (Item), item, ms, new ByteArrayContent(new byte[0]),
new Mock<TransportContext>().0bject);

var deserialized = ProtoBufFormatter.Model.Deserialize(ms, null, typeof (Item));

Assert.Same(deserialized, item);

}
[Fact]
public async void WhenReadingFromStreamShouldSuccessfullyComplete()
{
var formatter = new ProtoBufFormatter();
var item = new Item { Id = 1, Name = "Filip" };
var ms = new MemoryStream();
ProtoBufFormatter.Model.Serialize(ms, item);
var deserialized = await formatter.ReadFromStreamAsync(typeof(Item),
ms, new ByteArrayContent(new byte[0]),
new Mock<IFormatterLogger>().0Object);
Assert.Same(deserialized as Item, item);
}

Note It was mentioned that the Protocol Buffers formatter in WebApiContrib does not have any tests. Now it does,
because the tests used in this recipe have been contributed back to the project. Open source is great!

330

CHAPTER 11 TESTING WEB API SERVICES

11-5. Simplify Tests with IHttpActionResult
Problem

You have to perform a lot of complex setup in the tests for actions returning HttpResponseMessage and you would like
to avoid that.

Solution

By replacing HttpResponseMessage with IHttpActionResult you can shift the responsibility for producing the
response from the action itself to an external class (in this case, an implementation of IHttpActionResult).

This has great benefits for the testability of your actions, as lots of logic gets moved outside of them, helping you
conform to the golden rule of “lean controllers.”

LEAN CONTROLLERS

Lean, logic-free controllers are one of the cornerstones of architecting a maintainable web application. In the
ASP.NET world, one of the strongest advocates of keeping the controllers as simple as possible has been Jimmy
Bogard, who defined the following reasons for keeping the controllers lean:

e Controllers are not a proper place for your business logic.
e Actions should be declarative in nature.

e Simplicity and consistency are paramount.

e Unit testing controllers is difficult (painful).

You can learn more about lean controllers from his series of blog posts at http://lostechies.com/
jimmybogard/2013/10/10/put-your-controllers-on-a-diet-redux/. While Jimmy focuses on ASPNET MVC,
the same design principles apply to ASP.NET Web API.

How It Works

By switching from raw HttpResponseMessage usage to IHttpActionResult, you benefit immediately in
a number of ways:

e TheHttpResponseMessage creation logic, which can get very complex, is now out of scope for
the action.

e Thatlogic can be easily reused across different actions.

e Such IHttpActionResult implementation only needs to be tested once, helping you avoid
repetitive asserts across various tests.

e Core Web API already ships with plenty of IHttpActionResults, which you can freely use for
some most common tasks. Since they are part of the framework, they are unit tested by the
framework and as a result you do not have to do that anymore.

331

http://lostechies.com/jimmybogard/2013/10/10/put-your-controllers-on-a-diet-redux/
http://lostechies.com/jimmybogard/2013/10/10/put-your-controllers-on-a-diet-redux/

CHAPTER 11 © TESTING WEB API SERVICES

The Code

Consider the simple controller in Listing 11-18, which performs a redirect to another controller.

Listing 11-18. A Sample Controller with an Action Making Use of HttpResponseMessage Directly

public class ItemsController : ApiController

{
[Route("items/{id:int}", Name = "Items")]
public HttpResponseMessage Get(int id)

{
var response = new HttpResponseMessage(HttpStatusCode.Redirect);
var link = Url.Link("Other", new { id = id });
response.Headers.Location = new Uri(link);
return response;
}
public class OtherController : ApiController
{
[Route("id:int", Name = "Other")]
public Item Get(int id)
{
return new Item {Id = id, Name = "Filip"};
}
}

The Get action on the ItemsController is instantiating an instance of HttpResponseMessage and setting a 302
HTTP status code on it. It then proceeds to set the appropriate Location header on the response, using UrlHelper to
resolve a link to OtherController.

The whole example here is very trivial, but in the older versions of Web AP], it still required a tremendous amount
of setup to be able to unit test such a controller, as UrlHelper could not be mocked. Since Web API 2, things have
become much easier, as you can now set the UrlHelper instance on the controller using a public setter and override
its virtual members. Nevertheless, the test code for this action (Listing 11-19) is still not as simple as it could be.

Listing 11-19. Testing an Action Returning HttpResponseMessage

[Fact]
public void WhenGetIsCalledShouldRespondWithRedirectToOtherController()

{

var url = "http://www.apress.com";

var urlHelper = new Mock<UrlHelper>();

urlHelper.Setup(x => x.Link(It.IsAny<string>(), It.IsAny<object>())).Returns(url);
var controller = new ItemsController {Url = urlHelper.Object};

var result = controller.Get(5);

Assert.Equal(HttpStatusCode.Redirect, result.StatusCode);
Assert.Equal(new Uri(url), result.Headers.Location);

332

http://www.apress.com/

CHAPTER 11 TESTING WEB API SERVICES

The test in Listing 11-19 mocks the helper, and verifies the 302 status code and the Location header. Note that
the test can easily become very complicated if you perform some advanced tasks in your actions, such as manual
content negotiation.

On the other hand, the action can be quickly modified to use IHttpActionResult instead of
HttpResponseMessage; the built-in RedirectToRouteResult is doing exactly the same thing as the original action did
(Listing 11-20).

Listing 11-20. Same Action Rewritten to Use HttpResponseMessage

[Route("newItems/{id:int}", Name = "NewItems")]
public IHttpActionResult GetNewItems(int id)

{
}

return RedirectToRoute("Other", new { id = id });

Tip In this example, you do not need to new up an instance of RedirectToRouteResult since base ApiController
already provides helper methods for the built-in THttpActionResult, and it's normally more convenient to call those.

To test such an action, you only need to verify if the return Type is RedirectToRouteResult, as the redirection
functionality itself is already guaranteed by the framework (all built-in IHttpActionResults are unit tested by the
framework already). An example is shown in Listing 11-21.

Listing 11-21. Testing Whether the Returned IHttpActionResult Is of the Correct Type

[Fact]
public void WhenGetNewItemsIsCalledReturnTypeIsRedirectToRouteResult()

{
var controller = new ItemsController();
var result = controller.GetNewItems(5);

Assert.IsType<RedirectToRouteResult>(result);

While IHttpActionResult is not a silver bullet applicable in every scenario, if you shift to using it in some of your
heavier actions, you can generally benefit from having to test less.

11-6. Test Routes
Problem

You would like to test routing in your ASP.NET Web API application: whether a given URL really resolves to a specific
method, and whether it’s actually being invoked with a correct parameter.

Solution

With Web AP], it is possible to manually run the entire default mechanism responsible for controller selection and
action selection based on specific data. While the whole process is a bit rough, and not as elegant as, for example, the
manual content negotiation (see Recipe 4-7), it can still be packaged into a reusable tester class which you can apply
to many of your projects.

333

CHAPTER 11 © TESTING WEB API SERVICES

Once the selection process runs, you can compare its outcome to the class/method you are expecting to be hit:
HttpControllerDescriptor, to confirm the controller, and HttpActionDescriptor, to compare an action.

How It Works

For testing routes, ASP.NET Web API requires the following things to be set up:

e Some registered routes, so that a string (a URI) can be matched to some predefined routing
template. Obviously, we are talking about testing a route setup here—without that, there
would be nothing to test in the first place.

e Aninstance of HttpControllerSelector; in this recipe you assume that the default
DefaultHttpControllerSelector is being used. Otherwise you'd have to cater for the logic
used internally in that custom selector.

e HttpControllerSelector will allow you to get an HttpControllerDescriptor representing
the selected controller Type. To do that, you need an instance of HttpRequestMessage, with
some RouteData on it.

e Aninstance of ApiControllerActionSelector, which is used by
DefaultHttpControllerSelector to select a relevant action on the controller (using
ControllerDescriptor). This is done based on the route data and on the HTTP method.

With these bits in place, the whole action selection pipeline can be run in process, by hand, and used to verify
your routing mechanisms.

The Code

You'll need to set up a basic routing context to perform routing tests. This is all based on the current URL and a
configuration object that will have some Routes hanging off it. The RouteContext helper test class is shown in Listing 11-22.

Listing 11-22. RoutingContext Which Runs Action Selection Against Your Web API Request and Exposes the
Relevant Results

public class RouteContext

{

private readonly IEnumerable<HttpActionDescriptor> _actionMappings;

public RouteContext(HttpConfiguration config, HttpRequestMessage request)
{
var routeData = config.Routes.GetRouteData(request);
request.SetRouteData(routeData);

var controllerSelector = new DefaultHttpControllerSelector(config);
var descriptor = controllerSelector.SelectController(request);
ControllerType = descriptor.ControllerType;

var actionSelector = new ApiControllerActionSelector();
_actionMappings = actionSelector.GetActionMapping(descriptor)[request.Method.
ToString()];

}
public Type ControllerType { get; private set; }

334

extracted from the configuration, where route would be matched and set on the request itself. Then the controller

CHAPTER 11 TESTING WEB API SERVICES

public bool VerifyMatchedAction(MethodInfo method)
{

return _actionMappings.Any(item => ((ReflectedHttpActionDescriptor)item).MethodInfo.

ToString() == method.ToString());

Effectively, the class does go through the exact process mentioned in the “How It Works” section. RouteData is

selector is used to find out an HttpControllerDescriptor based on that request. Finally, controller Type is exposed
publicly (so that it can be used in the tests), and all action mappings for a given HTTP verb are saved in a private field,
as they will be used to compare if the selected action really does have the same signature as the one you are expecting.

With this small setup, you can proceed to writing test code for your routes. Let’s take a simple example of a

controller, like the one in Listing 11-23 (its implementation details are completely irrelevant).

Listing 11-23. A Sample Controller That Will Be Used to Test Routes

[RoutePrefix("coolitems")]
public class HappyItemsController : ApiController

{

[Route("")]
public IEnumerable<Item> Get()
{

return new List<Item> {
new Item { Id = 1, Name = "Filip" },
new Item { Id = 1, Name = "NotFilip" }

};
}

[Route("{id:int}")]
public Item GetById(int id)
{

}

[Route("")]
public void Post(Item item)

{}

[Route("{id:int}")]
public void Delete(int id)
{}

return new Item { Id = id, Name = "Filip" };

In case of this controller, what you would like to verify might be
e GEThttp://www.apress.com/coolitems ends up in the Get action of the controller

e GEThttp://www.apress.com/coolitems/1 ends up in the GetById action of the controller and
passes in 1 as the id parameter

335

http://www.apress.com/coolitems
http://www.apress.com/coolitems/1

CHAPTER 11 © TESTING WEB API SERVICES

e POST http://www.apress.com/coolitems ends up in the Post action of the controller

e DELETE http://www.apress.com/coolitems/1 ends up in the Delete action of the controller
and passes in 1 as the id parameter

Let’s write the tests. Remember, in order for the attribute routing to kick in, you have to manually invoke the

MapHttpAttributeRoutes method and EnsureInitialize on the HttpConfiguration. The tests are shown in Listing 11-24.

Listing 11-24. Unit Testing Routes

public class AttributeRouteTests

{

336

readonly HttpConfiguration _config;

public AttributeRouteTests()

{
_config = new HttpConfiguration();
_config.MapHttpAttributeRoutes();
_config.EnsureInitialized();

}

[Fact]

public void ItemsControllerGetIsCorrect()

{
var request = new HttpRequestMessage(HttpMethod.Get, "http://www.apress.com/coolitems/");
var routeTester = new RouteContext(_config, request);
Assert.Equal(typeof(HappyItemsController), routeTester.ControllerType);
Assert.True(routeTester.VerifyMatchedAction(ReflectionHelpers.GetMethodInfo
((HappyItemsController p) => p.Get())));

}

[Fact]

public void ItemsControllerGetByIdIsCorrect()

{
var request = new HttpRequestMessage(HttpMethod.Get, "http://www.apress.com/coolitems/7");
var routeTester = new RouteContext(config, request);
Assert.Equal(typeof(HappyItemsController), routeTester.ControllerType);
Assert.True(routeTester.VerifyMatchedAction(ReflectionHelpers.GetMethodInfo
((HappyItemsController p) => p.Get(7))));

}

[Fact]

public void ItemsControllerPostIsCorrect()

{
var request = new HttpRequestMessage(HttpMethod.Post, "http://www.apress.com/coolitems/");
var routeTester = new RouteContext(_config, request);
Assert.Equal(typeof(HappyItemsController), routeTester.ControllerType);
Assert.True(routeTester.VerifyMatchedAction(ReflectionHelpers.GetMethodInfo
((HappyItemsController p) => p.Post(new Item()))));

}

http://www.apress.com/coolitems
http://www.apress.com/coolitems/1
http://www.apress.com/coolitems/
http://www.apress.com/coolitems/7
http://www.apress.com/coolitems/

CHAPTER 11 TESTING WEB API SERVICES

[Fact]

public void ItemsControllerDeleteIsCorrect()

{
var request = new HttpRequestMessage(HttpMethod.Delete, "http://www.apress.com/coolitems/7");
var routeTester = new RouteContext(_config, request);

Assert.Equal(typeof(HappyItemsController), routeTester.ControllerType);
Assert.True(routeTester.VerifyMatchedAction(ReflectionHelpers.GetMethodInfo
((HappyItemsController p) => p.Delete(7))));

Note The host part of your HTTP request is not important in these tests; only the relative part of the Uri is affecting
the routing.

Each test is identical in terms of the setup and execution: an HttpRequestMessage is instantiated with the
relevant HTTP method and a URI pointing to some resource. Then the helper RouteContext is created based on
those two. Afterwards, you can compare the ControllerType on the RouteContext to the one you are expecting
the request to be routed to. Additionally, each test compares an expected method to the one determined by the
RouteContext object.

This particular comparison takes advantage of some reflection helpers (Listing 11-25); they are here merely so
that you can grab a MethodInfo in an elegant way, off an ExpressionTree. With that, all the comparisons that are
happening can be strongly typed, and the tests can be easily refactored in case some signatures change (since they
won't compile anymore).

Listing 11-25. ReflectionHelpers Useful for Obtaining MethodInfo in a Strongly Typed Manner

public class ReflectionHelpers

{
public static MethodInfo GetMethodInfo<T, U>(Expression<Func<T, U>>expression)
{
return GetMethodInfoInternal(expression);
}
public static MethodInfo GetMethodInfo<T>(Expression<Action<T>>expression)
{
return GetMethodInfoInternal(expression);
}
private static MethodInfo GetMethodInfoInternal(dynamic expression)
{
var method = expression.Body as MethodCallExpression;
if (method != null)
return method.Method;
throw new ArgumentException("Expression is incorrect!");
}
}

337

http://www.apress.com/coolitems/7

CHAPTER 11 © TESTING WEB API SERVICES

The controller and tests from Listing 11-24 use attribute routing, but if your code utilizes traditional centralized
routing instead, you can test that too. The only change is to modify the test class constructor where the routes are
initialized. You can either call MapHttpRoute inline, or pass the configuration to the method where you normally
register all the routes (i.e. WebApiConfig.Register).

public RouteTests()

{
_config = new HttpConfiguration();
_config.Routes.MapHttpRoute(name: "Default", routeTemplate: "{controller}/{id}",
defaults: new { id = RouteParameter.Optional });

}

11-7. Integration Testing
Problem

You would like to perform end-to-end integration testing of your ASP.NET Web API service.

Solution

ASP.NET Web API can be hosted entirely in memory (in process). This feature is extremely useful for integration
testing, as you can easily run the whole pipeline in memory, in a very fast and efficient manner. All you need to do is
just pass in a Web API HttpServer instance to the HttpClient constructor.

var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();

var server = new HttpServer(config);
var client = new HttpClient(server);
// client can now call Web API in memory

Tip For even more lightweight experience, you can use HttpActionInvoker, which HttpClient extends.

How It Works

One of the key aspects of the architecture of Web API (or rather the new HTTP object model it uses) is its client-server
symmetry. The entry point to Web API is an HttpServer, which itself is just a subclass of MessageHandler. As a
developer, you can then chain other handlers in this pipeline.

The .NET HttpClient, on the other hand, can use MessageHandlers on the client side too, as two of its
constructors actually accepts a handler as a parameter.

public HttpClient(HttpMessageHandler handler)
public HttpClient(HttpMessageHandler handler, bool disposeHandler)

The principle is similar to the server side, and handlers can be chained. You can imagine a LoggingHandler that

could log requests and responses and be totally agnostic about its environment. Such a handler would be equally
usable on the client and server side.

338

CHAPTER 11 TESTING WEB API SERVICES

As a consequence of this design, HttpClient does not have to send requests over the network to communicate
with Web API, since you can just pass the HttpServer directly through its constructor. With this type of setup, the
entire Web API pipeline would run in memory, bypassing any network interfaces. This has tremendous value for
testing scenarios, as well as for some highly specialized use cases beyond tests, such as local batching of requests or
developing applications using techniques like CefSharp, an embedded Chromium for .NET.

INTEGRATION TESTING WITH SELF-HOSTED WEB API

While self-hosting Web API might seem like an appealing approach to integration testing, it is not a
recommended practice.

Self-host (based on WCF and HttpListener) typically requires elevated privileges, which automatically means
that every component running tests in your Cl pipeline must run in admin mode (individual developer machines,
test runners, Cl server, and so on).

Additionally, what you really end up testing, in addition to your Web API service itself, is the underlying operating
system’s networking stack, and that might differ across different staging environments (for example, a given port
might not be available). As a result, you might get dragged into unnecessary debugging efforts across different
machines to even get the tests up and running.

Finally, due to some difference between web and self-host, testing using self-host doesn’t guarantee that the
service will behave and run correctly when hosted on ASP.NET and vice versa.

The Code

Let’s have a look at testing a simple Web API service. Since this is an integration test, there are a number of things you
might be interested in verifying.

¢ Does my controller respond correctly?

e Ismymessage handler invoked in the pipeline?

e Are my filters being executed?

e Ismy APIresponding with XML/JSON media types correctly?

Of course, in end-to-end testing scenarios, many more of such questions should be asked—and answered.

Consider the following simple system under test: a small controller (Listing 11-28), a logging message handler
(Listing 11-26), and a caching filter (Listing 11-27). For the sake of consistency with the rest of this chapter, the
handler will be identical to Recipe 11-2, and the filter the same as in Recipe 11-3. It is very typical in ASP.NET Web API
solutions to unit test the pieces individually and then verify them working together through an integration test.

Listing 11-26. A Sample Logging Interface and the Message Handler Using It

public interface ILoggingService

{
}

void Log(string message);

339

CHAPTER 11 © TESTING WEB API SERVICES

public class LoggingHandler : DelegatingHandler

{

}

public ILoggingService LoggingService { get; set; }

protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
CancellationToken cancellationToken)

{
var loggingService = LoggingService ?? request.GetDependencyScope().GetService(typeof
(ILoggingService)) as ILoggingService;
if (loggingService != null)
{
loggingService.Log(request.RequestUri.ToString());
return base.SendAsync(request, cancellationToken);
}

Listing 11-27. A Sample Filter Responding for Adding MaxAge to the Response

public class CacheAttribute : ActionFilterAttribute

{

}

public int ClientTimeSpan { get; set; }

public override void OnActionExecuted(HttpActionExecutedContext actionExecutedContext)

{

var cachecontrol = new CacheControlHeaderValue

{

MaxAge = TimeSpan.FromSeconds(ClientTimeSpan),
MustRevalidate = true

};

actionExecutedContext.ActionContext.Response.Headers.CacheControl = cachecontrol;

Listing 11-28. A DTO and a Simple Test Controller

public class MessageDto

{
}

public string Text { get; set; }

public class HelloController : ApiController

{

340

[Route("hello")]
[Cache(ClientTimeSpan = 100)]
public string Get()

{

}

return "Hello World";

CHAPTER 11 TESTING WEB API SERVICES

[Route("hello")]
public HttpResponseMessage Post(MessageDto message)

{

//pretend we process message here

return Request.CreateResponse(HttpStatusCode.Created, message);

Each integration test will need an in-memory server to be up and running, and have it configured with the
appropriate routes and configuration. If you use an external method to configure your Web API (such as the static
Register method that web host templates for Visual Studio add), you can pass the configuration object to it, but this
example will do everything inline. Obviously, in case your Web API application requires some customizations of the
configuration (such as replacing the default services, or changing media type support), those should be performed
here too. The basic wireframe for an integration test is shown in Listing 11-29.

Listing 11-29. The Minimum Setup Required to Run Integration Tests—an Instance of HttpServer,
HttpConfiguration, and Route Mapping

public class IntegrationTests

{

private readonly HttpServer server;
private const string Url = "http://www.apress.com/";
private readonly Mock<ILoggingService> loggingService;

public IntegrationTest()
{

_loggingService = new Mock<ILoggingService>();

var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();

config.MessageHandlers.Add(new LoggingHandler {LoggingService = _loggingService.Object});
_server = new HttpServer(config);

}

//tests will go here

public void Dispose()

{

if (_server != null)

{
}

_server.Dispose();

At this point, the whole Web API pipeline is set up in memory for each test run. The calls that will be made to this
pipeline will happen entirely in memory. However, you still need to use an absolute URI to be able to make the calls; it
does not matter which, as the HttpServer will only look at the relative part anyway.

341

http://www.apress.com/

CHAPTER 11 © TESTING WEB API SERVICES

Listing 11-30 verifies that the Get method responds correctly, that the cache attribute kicks in and sets the
Cache-Control like it was expected, and that the call goes through a LoggingHandler.

Listing 11-30. Tests Veryifing Successful Execution and Response from the Get Method, Action Filter,
and Message Handler

[Fact]
public async void GetHelloReturnsCorrectResponse()

{

var client = new HttpClient(_server);
var response = await client.GetAsync(Url + "hello");
var result = await response.Content.ReadAsStringAsync();

Assert.Equal("Hello World", result);

}
[Fact]
public async void GetHelloSetsMaxAgeTo0100()
{
var client = new HttpClient(_server);
var response = await client.GetAsync(Url + "hello");
Assert.Equal(TimeSpan.FromSeconds(100), response.Headers.CacheControl.MaxAge);
}
[Fact]
public async void GetHelloGoesThroughLoggingHandler()
{

var client = new HttpClient(server);
var response = await client.GetAsync(Url + "hello");

_loggingService.Verify(i => i.Log("http://www.apress.com/hello"), Times.Once);

Calling the API endpoints in memory is identical to using HttpClient against external resources; the only
difference is that the client was initially instantiated by passing in the HttpServer in the constructor. Reading the
response, response body, or headers is just regular usage of HttpClient API.

You can also perform more advanced tests of the content negotiation. Suppose you'd like to verify for sure that
your API can respond successfully in XML and JSON formats (or support any other media type that you intend to be
used with your API). In that case, you may want to write tests like the ones in Listing 11-31.

Listing 11-31. Tests Checking Media Type Support

[Fact]
public async void PostCanRespondInXml()
{
var message = new MessageDto
{
Text = "This is XML"
};

var client = new HttpClient(_server);
var response = await client.PostAsXmlAsync(Url + "hello", message);

342

http://www.apress.com/hello

CHAPTER 11 TESTING WEB API SERVICES

var result = await response.Content.ReadAsAsync<MessageDto>(new [] {new XmlMediaTypeFormatter() });

Assert.Equal(message.Text, result.Text);

}
[Fact]
public async void PostCanRespondInJson()
{
var message = new MessageDto
{
Text = "This is JSON"
};
var client = new HttpClient(_server);
var response = await client.PostAsJsonAsync(Url + "hello", message);
var result = await response.Content.ReadAsAsync<MessageDto>(new[] { new JsonMediaTypeFormatter() });
Assert.Equal(message.Text, result.Text);
}

Both tests are submitting a relevant representation of a resource to the API, and then verifying whether the
response comes back in the same media type format. Of course, you could easily get much more sophisticated
here, but the gist of the matter is that it’s extremely easy to quickly and efficiently run your entire Web API service in
memory, without touching the networking stack.

11-8. Integration Testing with OWIN
Problem

You would like to perform end-to-end integration testing of your ASP.NET Web API service. However, using the
HttpServer in a way discussed in Recipe 11-7 is not an option since you host Web API on the OWIN stack using
Project Katana and would like the OWIN pipeline to be included in the tests too.

Solution

AMicrosoft.Owin.Testing package on NuGet, which is part of the Katana project, allows you to run the OWIN
pipeline in memory. The usage is almost the same as HttpServer, except you either have to configure the Katana
IAppBuilder during the test setup or point the test server to your Startup class.

var server = TestServer.Create<Startup>();
var response = await _server.HttpClient.GetAsync("/hello");

How It Works

Hosting Web API with Project Katana is explained in detail in Recipe 2-2. The way it runs is memory is identical to
how HttpServer operates (see Recipe 11-7).

The Katana TestServer object contains a public property Handler, which holds an HttpMessageHandler, which
can be passed to the HttpClient’s constructor. That handler is actually an OwinClientHandler, which is the OWIN
pipeline entry and exit point. It is responsible for taking in an HttpRequestMessage (from HttpClient), dispatching it
through the OWIN pipeline, and grabbing the response and producing a relevant HttpResponseMessage.

343

CHAPTER 11 © TESTING WEB API SERVICES

The Code

Let’s use an identical configuration of the system under test as defined in Recipe 11-7 in Listings 11-26 through 11-28.
However, since the idea is to have a look at running OWIN pipeline in memory, let’s refactor the LoggingHandler into
an OwinMiddleware, such as the one shown in Listing 11-32. The rest of the Web API components (test controller,
filter) are intact.

Listing 11-32. Dummy Middleware Responsible for Logging

public class LoggingMiddleware : OwinMiddleware

{

public static Lazy<IlLoggingService> LoggingService = new Lazy<ILoggingService>(() => new
SampleLoggingService());

public LoggingMiddleware(OwinMiddleware next)
: base(next)

{
}
public override async Task Invoke(IOwinContext context)

{
//this is just a test implementation
LoggingService.Value.Log(context.Request.Uri.ToString());
await Next.Invoke(context);

Note To run Web API using OWIN, you need to install the Microsoft.AspNet.WebApi.Owin package.

LoggingService is exposed publicly so that it can be easily mocked. The OWIN Startup class (Listing 11-33) adds
the logging middleware into the pipeline and initializes Web API.

Listing 11-33. OWIN Startup Class Chaining the Logging Middleware and Web API

public class Startup

{
public void Configuration(IAppBuilder appBuilder)
{
var config = new HttpConfiguration();
config.MapHttpAttributeRoutes();
appBuilder.Use(typeof (LoggingMiddleware));
appBuilder.UselebApi(config);
}
}

You can now proceed to writing unit tests, and they will be remarkably similar to the ones written against Web
APT’s HttpServer. You will have to create an instance of a TestServer using the relevant factory method (TestServer
has no public constructors), and you will later use the HttpClient hanging off that TestServer to communicate
with your API in memory. The latter helps you avoid having to new up an HttpClient every time, although it’s not
mandatory, as you can use an independent instance of HttpClient too.

344

CHAPTER 11 TESTING WEB API SERVICES

The two available factory methods to create a TestServer are as follows:

public static TestServer Create<TStartup>();
public static TestServer Create(Action<Owin.IAppBuilder> startup);

They allow you to use the Startup class to initialize the OWIN pipeline, or to build it by hand in the tests.

In your particular integration test setup, in the constructor, you will also have to remember to add a
LoggingService onto your custom LoggingMiddleware middleware to be able to verify when and how it’s getting
invoked. This is shown in Listing 11-34.

Listing 11-34. Basic Setup for OWIN Integration Tests

public class IntegrationTests

{
private readonly TestServer _server;
private readonly Mock<ILoggingService> _loggingService;
public IntegrationTests()
{
_loggingService = new Mock<ILoggingService>();
_server = TestServer.Create<Startup>();
LoggingMiddleware.LoggingService = new Lazy<ILoggingService>(() => loggingService.Object);
}
//tests go here
public void Dispose()
{
if (_server != null)
{
_server.Dispose();
}
}
}

Since everything is in place, you can now add the tests (Listing 11-35), which are using the TestServer and the
HttpClient exposed by it to make the in-memory calls to the OWIN pipeline. The usage and semantics are identical
to normal usage of HttpClient APIs.

Listing 11-35. In-Memory Integration Tests for the OWIN Pipeline

[Fact]
public async void GetHelloReturnsCorrectResponse()

{
var response = await _server.HttpClient.CGetAsync("/hello");
var result = await response.Content.ReadAsStringAsync();

Assert.Equal("Hello World", result);

345

CHAPTER 11 © TESTING WEB API SERVICES

[Fact]

public async void GetHelloSetsMaxAgeT0100()

{
var response = await _server.HttpClient.GetAsync("/hello");
Assert.Equal(TimeSpan.FromSeconds(100), response.Headers.CacheControl.MaxAge);

}
[Fact]
public async void GetHelloGoesThroughLoggingHandlex()
{
var response = await _server.HttpClient.GetAsync("/hello");
_loggingService.Verify(i => i.Log("http://www.apress.com/hello"), Times.Once);
[Fact]
public async void PostCanRespondInXml()
{
var message = new MessageDto
{
Text = "This is XML"
};
var response = await _server.HttpClient.PostAsXmlAsync("/hello", message);
var result = await response.Content.ReadAsAsync<MessageDto>(new[] { new XmlMediaTypeFormatter() });
Assert.Equal(message.Text, result.Text);
}
[Fact]
public async void PostCanRespondInJson()
{
var message = new MessageDto
{
Text = "This is JSON"
};
var response = await _server.HttpClient.PostAsJsonAsync("/hello", message);
var result = await response.Content.ReadAsAsync<MessageDto>(new[] { new JsonMediaTypeFormatter() });
Assert.Equal(message.Text, result.Text);
}

The in-memory integration tests used here will ensure that HTTP requests can flow through your OWIN pipeline
seamlessly and hit the relevant middleware components. In addition to that, they validate for you that the expected
APIresponses are returned safely to the client.

346

http://www.apress.com/hello

CHAPTER 12

OData

In this chapter, I will briefly introduce ASP.NET Web API support for OData, the Open Data Protocol. You will learn
how to do the following:

e (Create a simple OData service in ASP.NET Web API (Recipe 12-1)

e Create centralized and attribute-based OData routes (Recipe 12-2)

e Work with OData Query Options (Recipe 12-3)

e Support OData functions and actions in ASP.NET Web API (Recipe 12-4)

12-1. Creating OData Services in Web API
Problem
You would like to create an OData service using ASP.NET Web API.

Solution

The easiest way to get started with OData in Web API is to use the ASP.NET scaffolder to generate OData controllers
for you. To do that, right click on your project and choose Add » New Scaffold Item.

This will pull up a dialog window such as the one shown in Figure 12-1, where you can choose either “Web API
2 OData Controller with actions, using Entity Framework” or “Web API 2 OData Controller with read/write actions.”
Visual Studio will then generate the relevant OData controller and download all the necessary NuGet packages to
allow you to get started with OData.

347

CHAPTER 12 © ODATA

Add Scaffold [x |

4 |nstalled

4 Common z i
e Web API 2 Controller - Empty W_eb APl 2 Upata Controller with actions,
¢ MVC using Entity Framework

Web AP by
Web AP 2 Controller with actions, using Entity Framework
A Web API 2 OData controller with CRUD

Web API 2 Controller with read/write actions actions to create, read, update, delete, and
list entities from an Entity Framework data

| context.

Web API 2 OData Controller with actions, using Entity Framework

Id: ODataControllerWithContextScaffolder

Web API 2 OData Controller with read/write actions

Figure 12-1. Adding OData controllers using ASP.NET scaffolder

However, the scaffolder option will only be available in web host (ASP.NET Web API hosted within an ASP.NET
web application). For other types of Web API hosts, you can start developing your OData endpoints by installing the
Microsoft.AspNet.0Data package (OData 4.0 specific) from NuGet.

How It Works

OData is a standardized protocol for exposing rich APIs over HTTP. OData 4.0 is approved by the OASIS international
open standards consortium and is often considered to be to the Web what ODBC (Open Database Connectivity) is to
the database world.

The Open Data Protocol (OData) enables the creation of REST-based data services, which allow
resources, identified using Uniform Resource Locators (URLs) and defined in a data model, to be
published and edited by Web clients using simple HTTP messages.

OData Version 4.0

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-parti-protocol.html

Tip The OData home page at www.odata.org is full of interesting resources that will help you get started with the
OData protocol.

348

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://www.odata.org/

CHAPTER 12 © ODATA

ASP.NET Web API 2.2 supports OData version 4.0 (Microsoft.AspNet.0Data NuGet package), while the
earlier releases supported OData 3.0. You can still use or target OData 3.0 though, if you specifically reference the
Microsoft.AspNet.WebApi.OData NuGet package.

OData controllers should inherit from an ODataController base class instead of the regular ApiController.
ASP.NET Web API allows you to mix OData controllers with traditional controllers within the same project, so you can
expose OData endpoints alongside your regular API resources.

Controllers derived from ODataController are configured differently by the framework. They get an OData-specific
IHttpActionSelector called ODataActionSelector, which is based on OData routing conventions, as well as
a specific set of media type formatters which replace the default ones. All of OData formatters are variations of
ODataMediaTypeFormatter, which can handle OData specific request/response formats in both XML (AtomPub) and
JSON (AtomPubJSON light).

The Code

Listing 12-1 shows a fully-functional, yet fairly typical, CRUD (create, read, update, delete) ODataController. In this
case it's a class generated by the ASP.NET scaffolder from a Player entity and an Entity Framework data context.

Listing 12-1. A Typical ODataController

public class PlayerController : ODataController

{
private PlayerContext db = new PlayerContext();

[EnableQuery]
public IQueryable<Player> GetPlayer()

{
}

return db.Players;

[EnableQuery]
public SingleResult<Player> GetPlayer([FromODataUri] int key)

{
}

return SingleResult.Create(db.Players.Where(player => player.Id == key));

public async Task<IHttpActionResult> Put([FromODataUri] int key, Player player)

{
if (!ModelState.IsValid)
{

}

if (key != player.Id)

return BadRequest(ModelState);

return BadRequest();

}

db.Entry(player).State = EntityState.Modified;

349

CHAPTER 12 © ODATA

try
{

await db.SaveChangesAsync();
catch (DbUpdateConcurrencyException)

if (!PlayerExists(key))
{

}

return NotFound();

throw;

}

return Updated(player);
}

public async Task<IHttpActionResult> Post(Player player)

{
if (!ModelState.IsValid)

{
}

db.Players.Add(player);
await db.SaveChangesAsync();

return BadRequest(ModelState);

return Created(player);
}

[AcceptVerbs("PATCH")]
public async Task<IHttpActionResult> Patch([FromODataUri] int key, Delta<Player> patch)

{
if (!ModelState.IsValid)

{
}

return BadRequest(ModelState);

Player player = await db.Players.FindAsync(key);
if (player == null)
{

}

return NotFound();

patch.Patch(player);

try
{

}

await db.SaveChangesAsync();

350

CHAPTER 12 © ODATA

catch (DbUpdateConcurrencyException)

if (!PlayerExists(key))

{
return NotFound();
}
throw;
}
return Updated(player);
}
public async Task<IHttpActionResult> Delete([FromODataUri] int key)
{
Player player = await db.Players.FindAsync(key);
if (player == null)
{
return NotFound();
}
db.Players.Remove(player);
await db.SaveChangesAsync();
return StatusCode(HttpStatusCode.NoContent);
}
protected override void Dispose(bool disposing)
{
if (disposing)
{
db.Dispose();
}
base.Dispose(disposing);
}
private bool PlayerExists(int key)
{
return db.Players.Any(e => e.Id == key);
}

The controller is very similar to typical Web API controllers, with just a few things worth highlighting:

e OData query syntax is supported through EnableQueryAttribute. This is discussed in detail
in Recipe 12-3.

e OData query syntax can be used against a single entity too (not just collections), as long as the
entity is wrapped in the SingleResult<T>. This is also discussed in detail in Recipe 12-3.

e FromODataUriAttribute should be used instead of traditional Web API FromUriAttribute
for binding values from a URI.

e OData controllers often allow partial update of entities. In this example, it's achieved
through the HTTP PATCH verb and a Delta<T>, a special type that only works with
ODataMediaTypeFormatters, and can be used to apply differentials between two instances

of the entity.
351

CHAPTER 12 © ODATA

Obviously the controller is not everything; the bare minimum to get started with OData is to create an Entity Data
Model (EDM) for your OData service and set up at least one OData route. Both of those operations are done against
an instance of the Web API HttpConfiguration, which is shown in Listing 12-2 (OData routing is explored in detail in
Recipe 12-2). EDM is used to define URIs for your service as well as to provide a semantic description (metadata) for it.

Listing 12-2. Setting Up an EDM and an OData Route

var config = new HttpConfiguration();
//configure your Web API

var builder = new ODataConventionModelBuilder();
builder.EntitySet<Player>("Players");

//first parameter is the name of the route, second is the route prefix for OData
//players resource is now accessible at /odata/players
config.Routes.MapODataServiceRoute("odata", "odata", builder.GetEdmModel());

The ODataConventionModelBuilder class helps you create an EDM without having to explicitly worry about
naming conventions, navigation properties, or keys. If you want to customize those default relationship conventions,
you can directly use its base class, 0DataModelBuilder, instead.

The EntitySet method adds an entity set to the EDM and defines a specific ODataController, in this case
PlayersController, to handle HTTP requests for that resource.

12-2. Manage OData Routes
Problem

You want to have full control over your OData routes.

Solution
To register a central OData route, use a MapODataServiceRoute extension method from the
HttpConfigurationExtensions class. A single route is enough, as the rest is handled by your Entity Data Model.

config.MapODataServiceRoute(routeName: "Default OData", routePrefix: "odata", model: myEdmModel);

To register a direct route, which is supported for OData since ASP.NET Web API 2.2, decorate an action method
with an ODataRouteAttribute. Similarly to regular attribute routing, you can also set up route prefixing at the
controller level, through ODataRoutePrefixAttribute.

[ODataRoute("Players")]
public IQueryable<Player> GetAllPlayers()

{
}

//omitted for brevity

352

CHAPTER 12 © ODATA

How It Works

Routes in the Web API implementation of OData are handled through the ODataRoute class, which is a subclass
of HttpRoute. The specialized route class is needed to support ODataPathRouteConstraint, an OData-specific
implementation of IHttpRouteConstraint, which ensures that all OData properties, such as EDM Model, OData path,
or the OData routing conventions are set on the HttpRequestMessage after an OData route is matched.

The ODataPath class is used to wrap the parsed OData resource path and expose its segments in a strongly typed
manner. By convention, ASP.NET Web API uses the resource path (part of the URI), such as /Players(1), to map
to a relevant controller, based on the setup in the Entity Data Model. Then, the verb-based action selection kicks in
to find a relevant action on the controller. Furthermore, OData in Web API also uses a number of custom routing
conventions, all of which can impact the action selection.

Tip For more information on OData routing conventions, see the official ASP.NET documentation at
www.asp.net/web-api/overview/odata-support-in-aspnet-web-api/odata-routing-conventions.

You can override the OData routing behavior and implement custom OData controller and action selection by
introducing your own IODataRoutingConvention, shown in Listing 12-3.

Listing 12-3. Definition of IODataRoutingConvention

public interface IODataRoutingConvention

{
string SelectController(ODataPath odataPath, HttpRequestMessage request);
string SelectAction(ODataPath odataPath, HttpControllerContext controllerContext,
ILookup<string, HttpActionDescriptor> actionMap);

}

Such a custom routing convention can then be passed to the MapODataServiceRoute extension method when
you define the OData routes; one of the overloads accepts a collection of I0DataRoutingConvention. If none of them
are passed (such as in the usage example of MapODataServiceRoute showed before), then Web API will internally
call a static ODataRoutingConventions.CreateDefaultWithAttributeRouting to use default built-in routing
conventions only.

Attribute routing in OData is simply another version of I0DataRoutingConvention-AttributeRoutingConvention.
It will find all ODataRouteAttribute usages and build up the appropriate mappings in the form of a
Dictionary<ODataPathTemplate, HttpActionDescriptor>.Ifthe incoming request matches the ODataPath from
the current HTTP request, then the controller related to this HttpActionDescriptor will be selected to handle the
request.

Attribute routing is a great choice for non-standard routes, such as when using unbounded OData functions or
actions. Trying to route to them with centralized routing requires a custom routing convention (so effectively, an extra
class), whereas with attribute routing it can be achieved straight away by simply annotating the relevant method with
the ODataRouteAttribute.

It is important to mention that, contrary to regular attribute routing, OData attribute routing is enabled
by default; that is, unless you override the default I0ODataRoutingConventions. If you don’t, then Web API
calls ODataRoutingConventions.CreateDefaultWithAttributeRouting internally whenever you use the
MapODataServiceRoute method, which ensures that AttributeRoutingConvention is included in the conventions
collection used by Web API OData. This is shown in Listing 12-4, in the excerpt from the Web API source code.

353

http://www.asp.net/web-api/overview/odata-support-in-aspnet-web-api/odata-routing-conventions

CHAPTER 12 © ODATA

Listing 12-4. ODataRoutingConventions Class, Ensuring That AttributeRoutingConvention Is Included

public static class ODataRoutingConventions
{
public static IList<IODataRoutingConvention> CreateDefaultWithAttributeRouting(
HttpConfiguration configuration,
IEdmModel model)

{ if (configuration == null)
{ throw Error.ArgumentNull("configuration");
if (model == null)
i throw Error.ArgumentNull(“"model");

IList<IODataRoutingConvention> routingConventions = CreateDefault();
AttributeRoutingConvention routingConvention = new AttributeRoutingConvention(model,
configuration);
routingConventions.Insert(0, routingConvention);
return routingConventions;

}

public static IList<IODataRoutingConvention> CreateDefault()
{
return new List<IODataRoutingConvention> ()
{
new MetadataRoutingConvention(),
new EntitySetRoutingConvention(),
new SingletonRoutingConvention(),
new EntityRoutingConvention(),
new NavigationRoutingConvention(),
new PropertyRoutingConvention(),
new RefRoutingConvention(),
new ActionRoutingConvention(),
new FunctionRoutingConvention(),
new UnmappedRequestRoutingConvention()

b
}
As aresult, there is no need to invoke any extra method at your application startup to instruct the framework

to scan for route attributes. In fact, the only way to get attribute routing to work in the first place is to call the central
MapODataServiceRoute.

354

CHAPTER 12 © ODATA

The Code

To introduce centralized routing into your OData Web API, you simply need to call MapODataServiceRoute against your
HttpConfiguration and pass in the route prefix and your IEdmModel. A full example of a Katana Startup class
with a single OData entity and a single central route is shown in Listing 12-5, using a Player entity.

Listing 12-5. Katana Startup Class Declaring a Basic OData Route

public class Startup

{
public void Configuration(IAppBuilder builder)
{
var odataBuilder = new ODataConventionModelBuilder();
odataBuilder.EntitySet<Player>("Players");
var edm = odataBuilder.GetEdmModel();
var config = new HttpConfiguration();
config.MapODataServiceRoute("Default OData", "odata”, edm);
builder.UseWebApi(config);
}
}
public class Player
{
public int Id { get; set; }
public string Name { get; set; }
public string Team { get; set; }
}

This allows you to use all of the default built-in routing conventions, such as the following:
e myapi.com/odata/Players
e myapi.com/odata/Players(key)
e myapi.com/odata/Players(key)/{navigation property | property}
e myapi.com/odata/Players(key)/{function | action}

Caution The default Web API OData routing convention uses a notion of a key, not an ID, so your controller actions
should also accept a key parameter.

Listing 12-6 shows an ODataController with two actions methods. Both of them have OData routes enabled
via attribute routing.

355

http://myapi.com/odata/Players
http://myapi.com/odata/Players(key)
http://myapi.com/odata/Players(key)/%7Bnavigation%20property%20%7C%20property%7D
http://myapi.com/odata/Players(key)/%7Bfunction%20%7C%20action%7D

CHAPTER 12 © ODATA

Listing 12-6. Sample Usage of Attribute Routing with ODataController

[oDataRoutePrefix("Players")]
public class PlayersController : ODataController

{
private readonly PlayersContext _players = new PlayersContext();
[EnableQuery]
[oDataRoute]
public IQueryable<Player> GetAllPlayers()
{
return players.AsQueryable();
}
[EnableQuery]
[oDataRoute(" ({key})")]
public SingleResult<Player> GetSinglePlayers(int key)
{
return SingleResult.Create(players.Where(x => x.Id == key).AsQueryable());
}
}

12-3. Enable OData Queries
Problem

You want your Web API endpoints to support the common OData System Query Options, such as $select or $filter.

Solution

To enable query options on a Web API endpoint, you decorate the action with an EnableQueryAttribute.

If your action does not return a collection, but a single instance of an object, a client could still apply two of the
query options, $expand and $select. However, to do that, you have to wrap the return object in a SingleResult<T>.
Both examples are shown in Listing 12-7.

Listing 12-7. Enabling Querying on Two OData Routes

public class PlayersController : ODataController

{
private readonly PlayersContext playersDbContext = new PlayersContext();

[EnableQuery]
public IQueryable<Player> GetAllPlayers()

{

}

[EnableQuery]
public SingleResult<Player> GetSinglePlayers(int key)
{

}

Return playersDbContext;

return SingleResult.Create(playersDbContext.Where(x => x.Id == key).AsQueryable());

356

CHAPTER 12 © ODATA

How It Works

The query options for OData are defined in the OData specification as “query string parameters that control the
amount and order of the data returned for the resource identified by the URL.” ASP.NET Web API supports almost all
of the query options defined in the standard:

e $expand: Allows the client to include a related resource(s) in the response, alongside the
requested resource.

e $select: Allows the client to limit the properties on the returned resource.
e $filter: Allows the client to filter resources available via an OData endpoint.

e $count: Allows the client to obtain the total count of entities in a collection without actually
retrieving them.

e $orderby: Allows the client to specify an ordering key for the queried collection.

e $skip: Allows the client to omit a certain amount of items from the queried collection.

e $top: Allows the client to restrict the count of entities returned from the queried collection.
e $format: Allows the client to request a response in a specific format.

The only one not supported is the free-text $search query parameter.

Tip You can find the entire OData v4.0 specification at www.odata.org/documentation/odata-version-4-0/.

The querying options are represented in ASP.NET Web API by the ODataQueryOptions class. The way
EnableQueryAttribute works is actually very straightforward. Since it's an action filter, it captures the response of
your action in the OnActionExecuted method, and tries to cast its HttpContent to an ObjectContent<T>. Then, it will
construct an instance of ODataQueryOptions from the HTTP request, based on the arguments supplied by the client,
and try to apply it to your response. If that response is a collection, it will apply all of the query options provided by
the client, and if the response is not a collection, it will expect the object wrapped within the ObjectContent to be a
SingleResult<T>. If that's the case, $expand and $select will still be supported.

Instead of using EnableQueryAttribute, ODataQueryOptions can also be accepted as an argument in your action
method. The way Web API supports this is through a custom HttpParameterBinding called ODataQueryParameterBinding.
You can then use the information from that ODataQueryOptions instance to manually perform the relevant querying.

What is interesting is that you do not have to fully embrace OData in your Web API to be able to take advantage of
the Query Options. The basic ones, such as $top, $skip, or $select can be applied to any Web API controller as long
as an action is decorated with EnableQueryAttribute, not just those that are built as ODataControllers.

The Code

With your controller actions decorated with the EnableQueryAttrbute, as shown in Listing 12-7, you are able to issue
any requests that rely on OData query options. For example,

e myapi.com/Players(1)?$select=Name, Team: Requesting player entity with key 1, but only its
Name and Team properties. The response is shown in Listing 12-8.

357

http://www.odata.org/documentation/odata-version-4-0/
http://myapi.com/Players(1)?$select=Name%2cTeam

CHAPTER 12 © ODATA

Listing 12-8. Sample Query Response from OData Web API Endpoint

Content-Length: 115

Content-Type: application/json; odata.metadata=minimal
Date: Thu, 12 Jun 2014 21:02:17 GMT

OData-Version: 4.0

Server: Microsoft-HTTPAPI/2.0

{
"@odata.context": "http://localhost:925/$metadatattPlayers(Name,Team)/$entity",
"Name": "Filip",
"Team": "Whales"

}

e myapi.com/Players?$skip=1&$top=2: Omit the first player entity, and take next two. The
response is shown in Listing 12-9.

Listing 12-9. Sample Query Response from OData Web API Endpoint

Content-Length: 194

Content-Type: application/json; odata.metadata=minimal
Date: Thu, 12 Jun 2014 21:03:12 GMT

OData-Version: 4.0

Server: Microsoft-HTTPAPI/2.0

{
"@odata.context": "http://localhost:925/$metadata#Players”,
"value": [
{
"Id": 2,
"Name": "Felix",
"Team": "Whales"
}
{
"Id": 3,
"Name": "Luiz",
"Team": "Dolphins"
}
]
}

e myapi.com/Players?$format=application/json;odata.metadata=full&$filter=Team%20
eq%20%27Whales%27: Requesting only player entities for which the Team property equals
“Whales” and in the JSON format, but also including all of the OData metadata such as type
information and navigation links. The response is shown in Listing 12-10.

Listing 12-10. Sample Query Response from OData Web API Endpoint

Content-Length: 769

Content-Type: application/json; odata.metadata=full
Date: Thu, 12 Jun 2014 20:59:59 GMT

OData-Version: 4.0

Server: Microsoft-HTTPAPI/2.0

358

http://myapi.com/Players?$skip=1%26$top=2
http://myapi.com/Players?$format=application/json;odata.metadata=full&$filter=Team%20eq%20%27Whales%27
http://myapi.com/Players?$format=application/json;odata.metadata=full&$filter=Team%20eq%20%27Whales%27

CHAPTER 12 © ODATA

{
"@odata.context": "http://localhost:925/$metadata#Players”,
"value": [
{
"@odata.type": "#Apress.Recipes.WebApi.Player",
"@odata.id": "http://localhost:925/Players(1)",
"@odata.editLink": "http://localhost:925/Players(1)",
"Id": 1,
"Name": "Filip",
"Team": "Whales",
"Stats@odata.associationLink": "http://localhost:925/Players(1)/Stats/$ref",
"Stats@odata.navigationLink": "http://localhost:925/Players(1)/Stats"
1
{
"@odata.type": "#Apress.Recipes.WebApi.Player",
"@odata.id": "http://localhost:925/Players(2)",
"@odata.editlLink": "http://localhost:925/Players(2)",
"Id": 2,
"Name": "Felix",
"Team": "Whales",
"Stats@odata.associationLink": "http://localhost:925/Players(2)/Stats/$ref",
"Stats@odata.navigationLink": "http://localhost:925/Players(2)/Stats"
}
]
}

As mentioned, you can also manually apply the query by adding ODataQueryOptions as a parameter of your
action. ODataQueryParameterBinding will take care of hydrating that object and passing it into your action,
where you can extract the values of relevant OData query options. The example using $top and $skip is
shown in Listing 12-11.

Listing 12-11. Working with ODataQueryOptions in the Action

public IQueryable<Player> GetAllPlayers(ODataQueryOptions queryOptions)

{
//the client sends top and skip
var filtered = _db.Players.Skip(queryOptions.Skip.Value);
if (queryOptions.Top.Value > 0)
filtered = filtered.Take(queryOptions.Top.Value);
}
return filtered.AsQueryable();
}

359

CHAPTER 12 © ODATA

12-4. Support OData Functions and Actions
Problem

You would like to use OData functions and actions in your Web API application.

Solution

When building an OData web service with ASP.NET Web API, you can define functions and actions through the fluent
builders exposed by ODataModelBuilder, EntityCollectionConfiguration, and EntityTypeConfiguration classes,
in the form of a Function and Action methods.

When setting up your ODataModelBuilder, you can specify the function or action name and define its input
parameters, as well as the expected return. See Listing 12-12 for an example.

Listing 12-12. Sample Function Exposed Off a Player Entity

var odataBuilder = new ODataConventionModelBuilder();
odataBuilder.EntitySet<Player>("Players");
var player = odataBuilder.EntityType<Player>();

//entity function - read some data
player.Function("Percentage0fAllGoals").Returns<double>();

//entity action - invoke an operation
player.Action("TradePlayer").Parameter<string>("NewTeam");

The mapping between a controller action and an OData function/action name happens by convention, through
the name, so you will need to add an action with a corresponding name to your OData controller.

How It Works

OData function support was introduced into ASP.NET Web API in version 2.2, even though they were already defined
as part of the OData 3.0 specification. On the other hand, actions were already available in earlier Web API versions.

You are able to define OData functions/actions and expose them directly as regular Web API action methods,
which can then be called by the client.

The primary advantage of using actions or functions is that they allow you to shift the responsibility of the query
composition back to the server side, which, especially in the case of complex queries, can relieve the clients from a lot
of unnecessary pain.

Semantically, there is little difference between OData actions and functions; they are both defined in the
specifications as “extending the set of operations that can be performed on or with a service or resource.” The primary
difference is that functions can have no side effects and must return data, while actions can produce side effects on
the server side, and do not need to return anything. Additionally, functions can be invoked from within a $filter
predicate.

In the ASP.NET Web API implementation of OData, actions and functions are defined together with all OData
conventions through an instance of your main ODataConventionModelBuilder object. Web API OData builder
supports three types (levels) of those operations:

e service actions/functions: Defined directly against your ODataModelBuilder.
e collection actions/functions: Defined against an EntityCollectionConfiguration.

e entity actions/functions: Defined against an EntityTypeConfiguration.

360

CHAPTER 12 © ODATA

The Code

Listing 12-13 shows a sample data set, embedded for demo purposes directly into a controller in the form of an
in-memory repository, as well as the definition of the Player DTO class.

You'll use them to create all three of the OData function types: service, collection, and entity-bound ones. The examples
will focus on functions, but defining and working with actions would be almost identical. The only difference would be that
in all places where the Function method is used for declaration, the Action method should be used instead.

Listing 12-13. Sample In-Memory Data and Entity Model

public class Player

{
public int Id { get; set; }
public string Name { get; set; }
public string Team { get; set; }
public SkaterStat Stats { get; set; }
}
public class SkaterStat
{
public int Goals { get; set; }
public int Assists { get; set; }
public int GamesPlayed { get; set; }
}
public class PlayersController : ODataController
{
private static List<Player> players = new List<Player>
{
new Player
{
Id =1,

Name = "Filip",
Team = "Whales",
Stats = new SkaterStat

{
GamesPlayed = 82, Goals = 37, Assists = 43
}
b
new Player
{
Id = 2,
Name = "Felix",
Team = "Whales",
Stats = new SkaterStat
{
GamesPlayed = 80, Goals = 30, Assists = 31
}
b

361

CHAPTER 12 © ODATA

new Player
{
Id = 3,
Name = "Luiz",

Team = "Dolphins",
Stats = new SkaterStat

{
GamesPlayed = 78, Goals = 20, Assists = 30
}
b
new Player
{
Id = 4,
Name = "Terry",
Team = "Dolphins",
Stats = new SkaterStat
{
GamesPlayed = 58, Goals = 19, Assists = 30
}
}

};

// rest of controller to be added

The aforementioned Function method, hanging off ODataModelBuilder, EntityCollectionConfiguration, and
EntityTypeConfiguration, returns a FunctionConfiguration instance, which can be used to configure the specifics
of your function, such as whether the function should be supported in $filter, what parameters it should accept,
and what should be its return. An example of a Katana Startup class defining three OData functions against the
ODataModelBuilder and one of its entity types is shown in Listing 12-14.

Listing 12-14. Katana Startup Defining OData Service Function, Collection Function, and Entity Function

public class Startup
{
public void Configuration(IAppBuilder builder)
{
var odataBuilder = new ODataConventionModelBuilder();
odataBuilder.EntitySet<Player>("Players");
var player = odataBuilder.EntityType<Player>();

//collection function
player.Collection.Function("TopPpg").ReturnsCollection<Player>();

//entity function
player.Function("Percentage0fAllGoals").Returns<double>();

//service function

var serviceFunc = odataBuilder.Function("TotalTeamPoints");
serviceFunc.Returns<int>().Parameter<string>("team");
serviceFunc.IncludeInServiceDocument = true;

var edm = odataBuilder.GetEdmModel();

362

CHAPTER 12 © ODATA

var config = new HttpConfiguration();
config.MapODataServiceRoute("Default OData", "odata", edm);
builder.UseWebApi(config);

TopPpg is a collection function, and it will return a collection of players with top points (goals + assists) per game
ratio. Percentage0fAllGoals is an entity function and will return a ratio of the goals scored by a given player to all of
the goals scored by all of the players. This function will require a key (player ID) to be passed by the client, but notice
that being an entity key, it does not need to be explicitly specified in the function builder. Finally, TotalTeamPoints
will be an unbounded service function, not related to a specific player. Instead, it will take a team name as a parameter
and return all points (goals + assists) scored by all of the players of that team. Additionally, the TotalTeamPoints will
be included in the service document, the /odata/$metadata, as a FunctionImport entry.

The functions are implemented as simple LINQ calculations happening inside an action method on your sample
OData controller (refer to Listing 12-13) and shown in Listing 12-15. The unbounded service functions are decorated with
an additional OData attribute route because the default EDM-driven routing convention would not pick it up otherwise.

Listing 12-15. Controller Actions Used to Expose the OData Functions
[HttpGet]
public IEnumerable<Player> TopPpg()

{

var result = players.OrderByDescending(x => (double)(x.Stats.Goals + x.Stats.Assists)/(double)
x.Stats.GamesPlayed).Take(3);

return result;

}
[HttpGet]
public IHttpActionResult PercentageOfAllGoals(int key)
{
var player = _players.FirstOrDefault(x => x.Id == key);
if (player == null) return NotFound();
var result = (double)player.Stats.Goals/(double) players.Sum(x => x.Stats.Goals) * 100;
return Ok(result);
}
[HttpGet]

[ODataRoute("TotalTeamPoints(team={team})")]
public int TotalTeamPoints([FromODataUri]string team)

{
var result = players.Where(x => string.Equals(x.Team, team, StringComparison.
InvariantCultureIgnoreCase))
.Sum(x => x.Stats.Goals + x.Stats.Assists);

return result;

With these in place, you can now call your OData functions using the function names in the URIL. As per the
specification, you need to include the brackets to indicate that you are calling an OData function:

e /odata/Players/Default.TopPpg()
e /odata/Players(1)/Default.Percentage0fAllGoals() - 1is a player's key
e /odata/TotalTeamPoints(team="Whales")
363

Index

A

Action filters, 323
code implementation, 325
HttpActionContext, 324
HttpActionExecutedContext, 324
working principles, 324
Action filters, input validation, 137
Abstract ActionFilterAttribute, 138
ActionFilterAttributes, 137
ExecuteActionFilterAsync method, 138
generic and repetitive tasks, 138
IActionFilter interface, 138
ModelNullCheckTypeAttribute, 137
ModelState, 139
HttpActionContext, 140
Inline action, 139
invalid object, 140
Null Action argument, 140
scope levels, 138
ValidateModelStateAttribute, 137
ASP.NET Web API], 1, 129, 171
anti-CSRF protection, 25
AJAX request, 27
extension method, 27
message handler, 26
tokens, 25
working principles, 25
ASP.NET MVC project, 1
code implementation, 3
default routing, 4
HttpControllerHandler, 3
IHttpAsyncHandler, 2
project wizard, 2
attribute routing, 197
code implementation, 199
header-based versioning, 199
IDirectRouteFactory, 198

IHttpControllerSelector, 198
media type-based versioning, 199
URI-based versioning, 199
working principle, 198
Azure mobile services (see Azure mobile services)
Azure workers, 50
cloud service, 50
code implementation, 52
endpoints configuration, 53
RoleEntryPoint, 51-52
working principle, 51
Batching HTTP requests, 186
code implementation, 188
DefaultHttpBatchHandler, 188
HttpBatchHandler, 187
HttpMessageContent instances, 189
HttpRequestMessage, 186
MapHttpBatchRoute method, 187
working principle, 187
caching, 143
Action Filter, 146
auto-invalidation, 149
CacheAttribute, 144
CacheOutput library, 147
IApiOutputCache interface, 147
ICacheKeyGenerator, 148
OnActionExecutedAsync
method, 147
RFC2616, 144
Strathweb.CacheOutput library, 147, 149
wrapper object, 144
centralized routing (see Centralized routing)
controllers (see External library, controllers)
custom HttpContent (see Custom HttpContent)
error detail policy, 158
exceptions
handling exceptions, 205
log exceptions, 210

365

IN

DEX

ASP.NET Web API (cont.)

366

F#, Azure service, 53
cloud project, 54
code implementation, 55
working principles, 54
HEAD verb (see HEAD verb)
Help page, 225
data annotations, 231
documentation, 223
filters, 228
HTML form, 9
code implementation, 10
FormDataCollection, 9, 11
HTTP request, 9
MediaTypeFormatter, 9-10
HTML pages, 161
IHttpActionResult, 164
MediaTypeFormater, 163
static HTML files, 161
WebApiContrib, 161
HTTP request, 166
HttpRequestMessage, 171, 174
code implementation, 173
HttpRequestParameterBinding, 173
request property, 171
working principle, 172
406 HTTP status code, 189
code implementation, 190
content negotiating mechanism, 189
working principle, 190
model validation, 20
annotations, 22
FluentValidation, 21, 24
IBodyModelValidator, 21
IValidatableObject, 21
IvalidateableObject, 23
IValidateableObiject, 23
MVC controllers, 12
BooksPageController, 14
code implementation, 13
GetVirtualPath, 12
HttpRouteUrl method, 12
RequestContext, 12
override filters, 142
DenyAnonymousAttribute, 142
HttpActionDescriptor, 142

IHttpActionResult implementation, 142

OverrideAuthorizationAttribute, 143

Owin NuGet package (see Owin NuGet Package)

Partial GET (see Partial GET)
PATCH HTTP verb, 182
code implementation, 183
Delta<T>, 184
manual updates, 183
reflection, 184
working principles, 182

Scaffolding, 15
ApiBaseController, 19
code implementation, 17
controller, 17
EF code, 16
item dialog, 16
working principles, 15
scriptcs, 48
code implementation, 49
prototyping and wireframing, 48
working principle, 49
session state, 28
APi controller, 31
HttpControllerHandler, 29
HttpControllerRouteHandler, 29
reflection-based trick, 30
RouteHandler, 29
working principles, 29
throttling, 129
WOCEF, self-host, 33
code implementation, 36
HttpListener class, 34
HttpSelfHostConfiguration, 35
netsh tool, 34
ttpSelfHostConfiguration, 33
web form application, 5
code implementation, 7
NuGet package, 6
PageHandlerFactory, 7
project wizard, 6
routing, 8
Attribute routing, 197
code implementation, 199
header-based versioning, 198-199
IDirectRouteFactory, 198
IHttpControllerSelector, 198
media type-based
versioning, 198-199
URI-based versioning, 198-199
working principle, 198
Azure mobile services, 41
code implementation, 46
Cloud Messaging, 48
controller, 46
ITableData Interface, 47
NET creation, 42
working principles, 43
ApiServices, 44
IPushMessage platforms, 45
management portal, 45
registering custom
services, 45
ServiceSettingsDictionary, 44
Azure workers, 50
cloud service, 50
code implementation, 52

endpoints configuration, 53
RoleEntryPoint, 51-52
working principles, 51

B

Batching HTTP requests, 186-187
code implementation, 188
DefaultHttpBatchHandler, 188
HttpBatchHandler, 187
HttpMessageContent

instances, 189
HttpRequestMessage, 186
MapHttpBatchRoute method, 187
working principle, 187

Binary data
ByteArrayContent, 117
HttpContent class, 116
MultipartContent, 118
PushStreamContent, 118
StreamContent, 117
working principle, 116

C

Centralized routing, 190
code implementation, 191
header-based versioning, 191, 195
[HttpControllerSelector, 192
media type-based versioning, 191, 196
URI-based versioning, 191, 193
working principles, 191
DefaultHttpControllerSelector, 191
IHttpControllerSelector, 191
Content negotiation (conneg), 91-92
bypass, 111
code implementation, 111
HttpResponseMessage, 111
IActionHttpResult, 111
IHttpActionResult Response, 112
ResponseDto, 112
working principle, 111
HttpResponseMessage, 93
JSON responses
code implementation, 103
DataContractJsonSerializer, 102
JsonMediaTypeFormatter, 102
working principle, 102
MediaTypeFormatter, 104
IRss Constraint Interface, 105
RssFeedBuilder, 107
RssMediaTypeFormatter, 106
SupportedEncodings, 105

SupportedMediaTypeMappings, 108

SupportedMediaTypes, 105
working principles, 104

INDEX

MediaTypeMappings, 114

code implementation, 115
QueryStringMapping, 114
RequestHeaderMapping, 114
UriPathExtensionMapping, 114

run, 109

caching solution, 110

code implementation, 110
ContentNegotiationResult, 109
IContentNegotiator, 109
working principles, 109

XML responses

code implementation, 103
working principle, 103
XmlMediaTypeFormatter, 102
XmlSerializer, 102
XmlWriterSettings, 103

Cross-origin communication
CORS, 239

BookController, 240
BooksController, 243
CorsMessageHandler, 240
EnableCorsAttribute, 239
EnableCors extension method, 239
policy information, 243

request and response, 240
sendBook function, 241

JSONP, 235

controller, 237
HttpConfiguration, 237
JsonpMediaTypeFormatter, 235
JsonpQueryStringMapping, 235
request and response, 236

web application interface, 238
WriteToStreamAsync, 236

Cross-origin resource sharing (CORS), 239
BooksController, 240, 243
CorsMessageHandler, 240
EnableCorsAttribute, 239
EnableCors extension method, 239
policy information, 243

app.config/web.config, 245
CorsElementCollection, 245
CorsPolicy class, 244, 246

CorsSection, 245

ICorsPolicyProvider interface, 243-244

request and response, 240
sendBook function, 241
Cross-Site Request Forgery (CSRF), 25
Custom HttpContent
abstract methods, 202
code implementation, 202

HttpRequestMessage/HttpResponseMessage, 203
ProtobufContent operations, 203

Content-Length header, 202
working principles, 202

367

INDEX

D

Dependency injection, 269
ASP.NET Web API components, 275
filters, 276-277
formatters, 278

GetPerRequestFormatterInstance method, 276

MediaTypeFormatters, 276
message handlers, 276-277
ASP.NET Web API controllers, 269
code implementation, 270
IDependencyResolver, 270
IDependencyScope, 270
IHttpControllerActivator, 269
containers, 272
code implementation, 273
IDependencyResolver, 272
working principle, 273
request scope, 274
code implementation, 275
GetDependencyScope method, 274-275
HttpRequestMessage method, 274
IDependencyResolver, 274
TinyloC container, 278
code implementation, 279
IDependencyResolver, 278-279
IDependencyScope, 279
working principle, 279

E

Entity Data Model (EDM), 352
External library, controllers, 132
DefaultAssembliesResolver
implementation of, 132
Lookup process, 133

FG

File uploads
bufferless, 122
IHostBufferPolicySelector, 122
owin host, 124
self host, 124
web host, 123
working principles, 122
MultipartStreamProvider class, 119
MemoryStream, 120
servers disk, 120
System.Web.HttpContext.Current, 120
working principles, 119
response streaming, 124
validation, 125
code implementation, 126
GetStream method, 126

368

MultipartMemoryStreamProvider, 125
working principles, 126

H

Handling exceptions, 205
ExceptionFilterAttribute, 205-206
base abstract, 206
code implementation, 206
IExceptionFilter Interface, 206
IExceptionHandler, 208
base abstract, 208
DTO wrapper class, 209
ExceptionContext property, 209
HttpRequestMessage, 209
[HttpActionResult, 210
unexpected error, 210
Hawk authentication scheme
HawkMessageHandler, 302
HTTP authorization header, 301
HttpClient, 303
MAC, 301
NuGet, 301
Web API Self-host, 302
HEAD verb, 178
AcceptVerbsAttribute, 178
code implementation, 180
HttpVerbsAttribute, 179
working principle, 179
Content-Length header, 179
controller, 180
DelegatingHandler, 180
Message handlers, 180
Help page, 228
BsonMediaTypeFormatter, 227
data annotations, 231
AnnotationTextGenerator, 231-232
ModelDescriptionGenerator class, 231
DisplayTemplates, 226
documentation, 223
ApiExplorerSettingsAttribute, 225
classes, 224
HelpPageAreaRegistration, 224
working principles, 223
filters, 228
Api action, 229
CachedFilterAttribute, 229
filter pipeline, 230
GenerateApiModel method, 229
GetFilterPipeline method, 229
HelpPageApiModel, 228, 230
HelpPageConfig, 225
MediaTypeFormatter, 226
RSS string, ValuesController, 226
SetSampleReponse, 225

HttpRequestMessage, 171, 174
code implementation, 173
hidden property, 172
Request property, 171
Web API pipeline, 171
working principle, 172
HttpRequestParameterBinding, 173
Request property, 172
HTTPS Supports
AuthorizeFilterAttribute, 291
IAuthenticationFilter, 289-290
IIS manager, 288-289
message handler, 290
protocols, 289
406 HTTP status code
code implementation, 190
content negotiating mechanism, 189
working principle, 190

LJ,K

IControllerConfiguration interface, 134
controller-scoped configuration, 134-135
definition of, 134
HttpControllerSettings, 134
InvokeAttributesOnControllerType, 135
ITraceWriter, 135
Trace configuration and XML configuration, 136

[HttpActionResult, 331
code implementation

built-in RedirectToRouteResult, 333
controller, 332
Get action, 332
manual content negotiation, 333
return Type, 333
HttpResponseMessage, 331
lean controllers, 331
working principles, 331
Integration testing, 338, 343
code implementation, 339
caching filter, 340
logging handler, 342
logging message handler, 339
test controller, 340
wireframe, 341
XML and JSON formats, 342
HttpClient constructor, 338
OWIN pipeline, 343
in-memory calls, 345
LoggingHandler, 344
setup constructor, 345
startup class, 344
working principles, 343

self-hosting Web API, 339

working principles, 338
LoggingHandler, 338
message handlers, 338

L

Log exceptions, 210
IExceptionLogger, 210-211
base abstract, 211
error entry, 213
EventLog, 212
ExceptionContext property, 211
NLog, 211

M, N
MediaTypeFormatter, 326
code implementation, 327
testing
CanReadType, 329
CanwriteType, 329
ReadFromStreamAsync, 330
WriteToStreamAsync, 330
verification
content headers, 328
deserializing, 328
serialization, 328
working principles, 327
Media types, 91
MediaTypeFormatters, 92, 94
coding, 95
JsonMediaTypeFormatter, 95
ProtoBufFormatter, 94
SupportedMediaTypes property, 94
WebApiContrib project, 94-95
working principles, 94
request and respond representation, 91
application/xml and application/json, 92
ASP.NET Web API Controller, 92
content negotiation (conneg), 92
NancyFx and ServiceStack, 91
request header, 91
using HTTP, 91
Message authentication code (MAC), 301
Message handlers, 321
code implementation, 322
IDependencyResolver, 323
ILoggingService, 323
SendAsync method, 321, 323
working principles, 322
HttpMessageHandler, 322
HttpMessagelnvoker, 322

INDEX

369

INDEX

Model binding process, 96

coding, 97

FromBody, 97

FromURI, 97

HttpParameterBinding, 96

ModelBinders, 96, 99

MVC-style parameter binding, 101
code implementation, 101
DefaultActionValueBinder, 101
MvcActionValueBinder, 101
working principle, 101

TypeConverter, 96, 98

ValueProviders, 96

working principle, 96

(0

OAuth 2.0
embedded authorization server, 306
HttpClient, 308

OAuthAuthorizationServerOptions, 304-305
OAuthAuthorizationServerProvider, 305

primary authentication, 304
Token helper class, 309
UseOAuthAuthorizationServer, 303

UseOAuthBearerAuthentication method, 303, 308
Open Database Connectivity (ODBC), 348

Open Data Protocol (OData), 347
controllers, 347
EDM, 352
ODataActionSelector, 349
ODataController, 349-351
ODBC, 348
scaffolder, 347-348
functions and actions
advantage, 360
collection, 360, 362
EDM-driven routing, 363
entity, 360, 362

In-Memory Data and Entity Model, 361

ODataModelBuilder, 360
services, 360, 362
URI, 363

route management, 352
AttributeRoutingConvention, 353

HttpConfigurationExtensions class, 352

HttpRequestMessage, 353
I0DataRoutingConvention, 353
Katana Startup class, 355
ODataController, 355

ODataRoutingConventions class, 354

system query options, 356
$count, 357
EnableQueryAttrbute, 357

370

$expand, 357
$filter, 357
$format, 357
metadata, 358
OnActionExecuted method, 357
$select, 357
SingleResult<T>, 356
$skip, 357, 359
$top, 357, 359
Web API Endpoint, 358
Open Web Interface for NET(OWIN), 37
Order filter execution, 151
CustomFilterInfo, 153-154
FilterInfo class, 151
FilterScope, 151
IFilter interface, 151
OrderedActionFilterAttribute, 152
Order property, 155
without custom filters, 156
Owin NuGet package, 37
code implementation
Web API hosted, 40
WebApp Class, 41
developer’s code, 39
HttpConfiguration object, 37
IAppBuilder, 39
request environment, 38
response environment, 38

PQ
Partial GET
bytes, 178
code implementation, 176
pagination manner, 177
PartialContent Support, 177
range header, 175
working principle, 175
Accept-Range header, 176
Content-Range header, 176
ContentRangeHeaderValue, 175
RangeHeaderValue, 175
RangeltemHeaderValues, 175
PATCH HTTP verb, 182
code implementation, 183
Delta<T>, 184
manual updates, 183
reflection, 184
working principle, 182
PushStreamContent, 248
HttpResponseMessage, 248
response Stream, 249
StreamReader, 250
working principles, 248

R

Remote procedure call (RPC), 71
ApiControllerActionSelector, 72
attribute routing, 71
centralized routing, 71, 73
CreateRoute method, 73
IHttpActionSelector, 72
RpcRouteAttribute, 73-74

Request scope, 274
code implementation, 275
HttpRequestMessage extension method, 274
working principle, 274

GetDependencyScope method, 275
IDependencyResolver, 274

Route management, 352
AttributeRoutingConvention, 353
HttpConfigurationExtensions class, 352
HttpRequestMessage, 353
I0DataRoutingConvention, 353
Katana Startup class, 355
ODataController, 355
ODataRoutingConventions class, 354

Routing, 57
catch-all routes, 75

code implementation, 75
common approach, 76
working principles, 75
centralized routes, 57
controllers, 58-59
HttpRouteCollection class, 58
HTTP verb-based dispatching, 59
MapHttpRoute method, 57-58
Nested routes, 60
controller methods, 76
action selection, filtering rules, 77
code implementation, 78
NonActionAttribute, 76
direct routes, 61
attribute routing, 61-62
centralized routing, 62
HTTP verb attribute, 63
MapHttpAttributeRoutes, 61
ignore routes, 80
extension method, 82
HttpRoutingDispatcher, 81
OWIN pipeline, 81
StopRoutingHandler, 80, 82
localize routes, 82
code implementation, 84
DefaultDirectRouteProvider, 83
GetRouteData method, 85
IDirectRouteFactory, 82-83
IDirectRouteProvider, 83, 85
MapHttpAttributeRoutes, 86

INDEX

message handlers, 78
HttpControllerDispatcher, 79
logging handlers, 79
MapHttpRoute method, 78
request/response logging, 80

optional parameters, 65
code implementation, 66
supportive declaration, 65
working principles, 65

route constraints, 67
attribute routing, 70
centralized routing, 69
direct routing, 69
IHttpRouteConstraints, 67-68, 70
working principles, 67

route values, 63
attribute routing, 64
centralized routing, 64
working principles, 64

RPC routes, 71
ApiControllerActionSelector, 72
attribute routing, 71
centralized routing, 71
code implementation, 73
IHttpActionSelector, 72

UrlHelper class, 87
code implementation, 88
working principles, 88

S

Scriptcs, 48

code implementation, 49

prototyping and wireframing, 48

working principle, 49

Security, 283

authentication
AuthenticationConfiguration class, 293
AuthenticationOptions class, 294
HttpConfiguration, 295
IAppBuilder extension method, 295
OWIN middleware, 292
settings, 292

Hawk authentication scheme (see Hawk

authentication scheme)

header footprint
HTTP components, 314
IHttpModule, 313, 315
server, 314
X-AspNet-Version, 315
X-Powered-By Header, 315

HTTPS Supports
AuthorizeFilterAttribute, 291
TAuthenticationFilter, 289-290
IIS manager, 288-289

371

INDEX

Security (cont.)

message handler, 290
protocols, 289

integrate windows authentication

approach, 297

enumeration, 298
HttpBindingSecurityMode, 298
HttpClientHandler, 298
HttpListener, 299
HttpSelfHostConfiguration, 299
IIS Express, 300

SPNEGO protocol, 297
web.config file, 296

IPrincipal, 310

ApiController, 311
HttpAuthenticationContext, 311
HttpRequestContext, 310-311, 313
Message Handler, 312

OAuth 2.0

embedded authorization server, 306

HttpClient, 308
OAuthAuthorizationServerOptions, 304-305
OAuthAuthorizationServerProvider, 305
primary authentication, 304

Token helper class, 309
UseOAuthAuthorizationServer, 303
UseOAuthBearerAuthentication method, 303, 308

Web API components

action-level filters, 285
Authentication, 284
Authorization, 284
HostAuthenticationFilter, 286-287
TAuthenticationFilter, 287
TAuthorizationFilter, 284-285
MessageHandlers, 284, 286

Server, 314
Server-sent events, 251
client applications, 251

event listeners, 255
EventSource interface, 251
HTML application, 253

JavaScript view model, 254

POST chat messages, 252
StreamWriter objects, 252

window.EventSource property, 255
Simple and Protected Negotiation (SPNEGO) protocol, 297

UV

Test controllers, 317

372

code implementation

controllers, 318

GetByld Action, 321
ModelState-driven Exception Path, 320
post action, 319

controller setup, 317
working principles, 318
Test routing, 333
controller, 335
MapHttpAttributeRoutes method, 336
ReflectionHelpers, 337
route context, 334
working principles, 334
Throttling, 129
code implementation
GetUserldentifier method, 131
IUserStore, 131
ThrottlingHandler setup, 130
I'ThrottleStore interface, 130
ThrottlingHandler, 130
timespan, 130
TinyloC container, 278
code implementation, 279
IDependencyResolver, 281
IDependencyScope, 279
DI container, 279
working principle, 279

w

WCE self-host
code implementation, 36
HttpSelfHostConfiguration, 33
working principles, 34
HttpBinding, 34
HttpListener class, 34
HttpSelfHostConfiguration, 35
netsh tool, 34
Web API controllers
integrate SignalR, 255
abstract base class, 258
Autofac, 260
book model and booksController, 257
BooksBroadcaster class, 259
client-side code, 261
document.ready method, 262
IHubConnectionContext, 257
IHubContext, 256
Modified BooksController, 260
OWIN Startup class, 257, 263
web sockets, 263
HTML chat application, 266
JavaScript chat application, 267
WebSocketHandler, 263, 265
working principles, 264
Web API tracers, 213
HttpConfiguration object, 216
controller's constructor, 217
extensions methods, 217
working principles, 217

logging framework, 215
NLog configuration, 216
NuGet installation, 215
working principles, 215
real-time tracer, 218
class representation, 221
enable and disable methods, 222
helper method, 220
JS/HTML implementation, 223
NLogTraceWriter, 221
OWIN Startup class, 219
switch method, 221

INDEX

trace method, 220-221
working principles, 219
System.Diagnostics.Trace, 213
code implementation, 214
ITraceWriter Interface, 214
trace levels, 214
Windows communication foundation (WCF), 33

XY Z
X-AspNet-Version, 314-315
X-Powered-By Header, 314-315

373

ASP.NET Web API 2
Recipes

Filip Wojcieszyn

Apress

ASP.NET Web API 2 Recipes: A Problem Solution Approach
Copyright © 2014 by Filip Wojcieszyn

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5980-0
ISBN-13 (electronic): 978-1-4302-5981-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer

Lead Editor: Gwenan Spearing

Technical Reviewer: Fabio Claudio Ferracchiati

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts

Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com
www.apress.com/9781430260257
www.apress.com/bulk-salesm

This book is dedicated to the .NET open source community.

Contents

About the AULNOFcciiiiiiemmiiiisesnnissasn s nan e ann e e s ann R e e s nnn R R R nnnnnss XXV
About the Technical REVIEWETccuvussmsmsssssmsssnssssssnsssssssssssssssssnsssssnssssansssssnsssssnnesssnnssssns XXvii
Acknowledgments.......cccuuuusssssnnnsnnmnmmmssssssssnnsnnnnnsssssssssnnnsnnsnnssssssssnnnnnnnnnssssssssnnnnnnnnnnsssssnnn XXix
LT LT T | XXxi
Chapter 1: Web APl in ASP.NETccceutimmmmmmmmmsssssssmmmssmssnnnnsnssnnss 1
1-1. Add ASP.NET Web API to an MVC Applicationc.ccecvereercessesses s sss s s snssnsnas 1

L (0] 1] 15T 1 SRRSO 1
SOIUTION....c e e e e ae e R R e R e R AR AR R RS RS e RS R SRR A e e eRe e Re e e Re e e Re R e e nRe e ns 1

HOW BEWOTKS.....cceeceeere ettt e e st e s bR e e E et A e e R e e Re e e Re R e e R e e Re e nis 2

LT T 3

1-2. Add ASP.NET Web API to a Web Forms Applicationcccocvvrvrnrcrsncssesseses s 5

o £0]0] =T 1 1 SRRSO 5

ST 11§ O 5

HOW TEWOTKS.....cveeeceececiece e sae e s re e a e s a e s e s e s e s a e s e e e e e se e ee e R e e e e e e e s e b e neenRe e e s e s enseneensenrensn 6

L 0 LT 7

1-3. Accept an HTIML FOrM........o et n e sn e s s n e s s s 9

o (1] T 9
0] 1) 10 RS TPSR ST YRS 9

HOW HEWOTKS......ccvcecieeresese e s s s s s ss s s sas e s e sae s s s s s e s ae e sae e s se s s nae e sae e saenensnssnsessenessnnsnnes 9

THE COUE.....ecveueerrrrereeserrsre et s s st e st a s e e s s e e s s Re e e e s R e e A s R e e e A s R e Re e R e R e Re e R e R e Re e b e A e Re e e nenRe e e s nsenennes 10

1-4. Link from MVC Controller to API Controller and Vice Versa..........c.cceeverrersessessessensessensensenns 12

o (0] 1] 1T 1 RSOSSN 12

ST 11 (o O PRSP SR 12

vii

CONTENTS

HOW HEWOTKS. ...t 12
LI TC 0T 13
1-5. Use Scaffolding with ASP.INET WEb AP ... s e 15
PrODIBIM ... 15
£ 0] o] 15
0] € N 15
LI LT T 15
1-6. Add Model Validation ... 20
0 100 [T 3 20
301110 20
HOW HEWOTKS....cuciiiisisisisisisisisisis iR 21
LI L= 0 22
1-7. Use CSRF Protection ... 25
0 1001 3 25
SOIUTION. ...t 25
HOW HEWOTKS. ... 25
LI L TC 0T 25
1-8. Add Support for SESSION STALe..........ccvcrverirrirrr s ———————— 28
PrODIBIM ... 28
£ 0] (o] 28
T] € N 29
LI LT o 29
Chapter 2: ASP.NET Web API OQutside of IIS...........cccsimiminmninismmnnnnnnnnsssessss. 33
2-1. Self-HOSt ASPNET WED AP ..ottt se st se st ss s sassn s s s sn s sn e sn s 33
PrODIBIM ... 33
£ 0] o] 33
0] € N 34
LI LT T 36
2-2. Host ASP.NET Web APl With OWINcoeiieeericecir e sss s e sns s e snssnnnens 37
0 100 [T 3 37
301110 37

viii

CONTENTS

0 LT € 37
LI L TC T 40
2-3. Host ASP.NET Web APl in Azure Mobile SErviCes........ccovverrrereressernsesesessesssssssesessessesessens 41
PrODIBIM ... s 41
£ 0] o] 41
0 0] € N 43
LI LT T 46
2-4. Quick Prototypes With SCHPICScccerirerricrr e 48
0 100 [T 3 48
301110 48
HOW HEWOIKS. ..o 49
L= 0 49
2-5. Host ASP.NET Web API in Azure Worker ROIE.........c.coveinnncninninsnessnsese s 50
0 1001 3 50
SOIUTION. ...ttt 50
HOW HEWOTKS. ...t 51
LI L TCN 0T 52
2-6. Use ASP.NET Web APl With F ...ttt ss s e s e snnnas 53
PrODIBIM ... 53
£ 0] o] 53
0 0 R € N 54
LT o 55
1 T T g T 57
3-1. Define Centralized ROULES........cccoveeereresessernsesessssesse e e s sse e s s sse s e snssssssssssesssssnsens 57
PrODIBIM ... s 57
£ 0] o] 57
0 0] € N 58
LI LT T 59
3-2. Define DIreCt ROULEScccceriiirrnnisn s s s 61
0 100 [T 3 61
301110 61

CONTENTS

HOW TEWOTKS.......ceeeeccisieecseri et s e e R e e e A e Re e e A e Re e b e s Ra e e e nrennas 61
THE COUE.....ceeeeceeeeeereri et e et e e s s e e e s Re e e e s R e e e e e R e Re e e e R e AR e e e A e Re e b e A e Re e e e nRensn e naannsnnnes 62
3-3. Set Default ROUTE VAIUES.........ccooeeiererieresrne s sse s sss e sse e s sss s ssessssessssssssssssesssssnsens 63
o (0] 0 PP 63
RS T0] 1110 o PSSR 63
HOW TEWOTKS......ceeceere s s sa s s s e s e s e e s ae e s ae e s aene s e san e saesenannenanssnanes 64
THE COUE.....eeveeeererrrreererssseesessssee e ss et ssss e e e s s e e e s s se e e s R e e e e e s R e e e e e e R e Re e e R e R e Re e R e R e Re e e e A e Re e e nenResn e e nrnsnnnrnes 64
3-4. Set Optional ROULE VAIUES........cceverrerrerrerrer s ss s se e sas s sas s snssnssnssnssnssesnnns 65
o £0] T 65
310] o] 65
0 0 L] € 65
LT o 3 66
3-5. Set Route ConStraintsccccvcrenicnninesne s 67
o (0]] T TSP 67
RS 0] 1110 o PP 67
HOW TEWOTKS.......ceeeeccieisec et e s d s e e R e Re e e A e Re e e e s Re e e e nrnnn s 67
THE COUE.... et e st e s s e e s Re e e e s R e e e e e R e Re e e e R e Re e e e A e Re e b e R e Re e e s s nResn e e nsannannnas 69
3-6. Define Remote Procedure Call Style ROULES..........cccuceerenererenseresesesss s sesesse s sesse e ssesennens 71
o (0] 0 T Al
£ T0] 1110 o PSPPSR 4l
HOW HEWOTKS.....c.cecceeeccsercses s s sa s s s e s s e s e e s ae e s ae e s aene s e sae e naenennnnenanssnanes 72
THE COUE.....eeveeeererrrreererssseesessssee e ss et ssss e e e s s e e e s s se e e s R e e e e e s R e e e e e e R e Re e e R e R e Re e R e R e Re e e e A e Re e e nenResn e e nrnsnnnrnes 73
3-7. Create CatCh-all ROULESccccvereererecresecr s 75
o £0] T 75
£ T0] (o] 75
0 0 L] € 75
LT o 3 75
3-8. Prevent Controller Methods from Inadvertently Becoming Web API Endpoints 76
o (0]] T TSP 76

Y0 V(0 SRR 76

CONTENTS

0 LT € 76
SOIUTION. ...t 78
3-9. Configure Route-Specific Message HandIerscocceveenrerenensesensssesessessessssessssesssssnsens 78
PrODIBIM ... s 78
£ 0] o] 78
0 0] € N 79
LI LT T 79
3-10. 1gN0IE ROULES......ccceecirceerir e s sn e s sn e s n e s n e e n e 80
0 100 [T 3 80
301110 80
HOW HEWOIKS. ..o 81
L= 0 82
3-11. LOCAlIZE ROULES.......cecirericirineiri s 82
0 1001 3 82
SOIUTION. ...ttt 82
HOW HEWOTKS. ...t 83
LI L TCN 0T 84
3-12. Generate a Link t0 the ROULEccceceieeicerni e sns s e 87
PrODIBIM ... 87
£ 0] o] 87
0 0 R € N 88
LT o 88
Chapter 4: Content Negotiation and Media TYPeS......ccciussuemmmmmssssnnmmssssssssssssssnsssssssssnnsssss 91
4-1. Request a Specific Media Type from ASPNET Webh API..........corrrvrvrrrrrer e 91
PrODIBIM ... s 9
£ 0] o] 91
0 0] € N 9
LI LT T 92
4-2. Support Additional Media TYPES......ccuvrrerrerrerrerrerserssssesssssesssasssssnns 94
0 100 [T 3 94
301110 94

CONTENTS

HOW TEWOTKS.......ceeeeccisieecseri et s e e R e e e A e Re e e A e Re e b e s Ra e e e nrennas 94
THE COUE.....ceeeeceeeeeereri et e et e e s s e e e s Re e e e s R e e e e e R e Re e e e R e AR e e e A e Re e b e A e Re e e e nRensn e naannsnnnes 95
4-3. Control Model Binding From URI @and Bodyccooueerenmrenrnsesesessessssesessssesssssssessssessessnsens 96
o (0] 0 PP 96
RS T0] 1110 o PSSR 96
HOW TEWOTKS......ceeceere s s sa s s s e s e s e e s ae e s ae e s aene s e san e saesenannenanssnanes 96
THE COUE.....eeveeeererrrreererssseesessssee e ss et ssss e e e s s e e e s s se e e s R e e e e e s R e e e e e e R e Re e e R e R e Re e R e R e Re e e e A e Re e e nenResn e e nrnsnnnrnes 97
4-4, ASP.NET MVC-style Parameter Bindingin ASPNET Web APocovrvrvrvrnnrrrersenrennnne 100
L0 (0] 11T 100
LS T0] (o] 101
g (0 L] € 101
LT o 3 101
4-5. Customize XML and JSON RESPONSEScceceeerrrrrerserserssssenssnns 102
L0 (0] 1T O 102
£ 10 10 o T 102
g (03 L] €3PS 102
THE COUE......eeueeereeecreet et a et e e e s e e e e s A e Re e s e s A e Re e e s R e Re e e e R e Re e b e A s Re e b e s Rean b e nnnnnnnnnas 103
4-6. Write Your Own MediaTypeFormatter...........ccvceecrennsenesnsess s sessessesennens 104
o (0] < 0 T 104
£ 1] 11110 o PSP R 104
HOW HEWOTKS......ceceecescseeeseee s se s s s e ss e e ne s sa s e sas e sae e san s nssssnsessnssssnnssssnsnnens 104
THE COUE.....ecueueererreeerersssesese s s e e s s e e s se e e s ae e se e s e e e e e s s s se e e e A e Re e e e A e Re e e e R e Re e e A e Re e e e nRese e nenRnsn e nenansnnnnnes 105
4-7. Run Content Negotiation Manuallycccovvvrrrnnnnnnrrrs s e e s e e sessassnnns 109
L0 (0] 11T 109
LS T0] (o] 109
g (0 L] € 109
LT o 3 110
4-8. Bypass Content Negotiation............cceoveeeecncssesss s 111
L0 (0] 1T O 111
£ 10 10 o T 111

xii

CONTENTS

HOW HEWOTKS. ...t 111
LI L Tc N 0T 111
4-9. Control Media Types with MediaTypeMappings........ccceevrrrerrerrersensesssssesssssessessessessessessenns 114
PrODIBIM ... 114
£ 0] (o] 114
g 0] € N 114
LT o 115
4-10. Serve Binary Data from ASPNET WED AP ... e e e e e e sasnnns 116
0 103 [T 116
3101110 116
HOW TEWOIKS....cociiiiisisisisisisisis ittt 116
LT 0 117
4-11. Accept File UPlO@dscccceerceceerircieciree st sn s e e s s sn s sn s sn e n s snesnesnannn 119
0 10 0] [o 119
SOIUTION. ...ttt 119
HOW HEWOTKS. ... 119
LI L TC N T 119
4-12 Enable BUfferless UPloads..........cccoeeerrerrerrernersessesses s sss s e ses s sssssssssssssssssssssssssssssnns 122
PrODIBIM ... 122
£ 0] (o] 122
g 0 1 € N 122
LI LT o 123
4-13 Validate File Uploadscccccvcmririmninrernirsee e s sse s s sse s s s e s sss s ssnessessnssnean 125
0 103 [T 125
3101110 125
HOW HEWOIKS....cuciiiiisisisisisisisis st 126
LT 0 N 126
Chapter 5: Configuration and Customization..........ccocusemmsssnsmssssnmsssnsmsssssssssssssssnsssssnnsss 129
5-1. Throttle ASP.NET Web API CallScccorerrererererircsensese s ssessssessssessessssesssssssessssessens 129
0 103 [T 129
3101110 129

CONTENTS

HOW HEWOTKS. ...t 130
LI L TC N T 130
5-2. Use Controllers from an External ASSEMDIY..........c.ccoovverenriernnesennsesess s ssesennens 132
PrODIBIM ... 132
£ 0] (o] 132
g 0] € N 132
LI LT T 133
5-3. Use Controller-Scoped Configuration...........cccuevrerrnsennensessenssssessessessessesssssesssssessasssssassnnas 134
0 10 0] [T 134
3101110 134
HOW HEWOIKS....cociiiiisisisisisisisis s 134
LT 0 N 135
5-4. Validate Input with ACtion FIlterscveeeeeececece et 137
0 1001 3 137
SOIUTION. ...ttt 137
HOW HEWOTKS. ...t 138
LI L TC N 0T 139
5-5. OVEITIAL FIHEIS ..eeeeeeieeeere et se s sn s ns s s n s snenn s snennnens 142
PrODIBIM ... 142
£ 0] (o] 142
g 0] € N 142
LI LT o 142
5-6. Add Caching t0 ASP.INET WED AP ...t se e s sns s snesensens 143
0 10 0] [T 143
3101110 144
HOW HEWOIKS....cociiiiisisisisisisisis s 144
LT 0 145
5-7. Use an Existing Caching LIDFaryc.cceceeeennessesssescsssss s sssses s sssssssnsssssnssssssssessssnnnns 147
0 1001 3 147
SOIUTION. ...t 147

Xiv

CONTENTS

g (03 1] € 3P 147
THE COUE......ceeeeeeeeeeceeei et s e e s e e e s e ae e e A e Re e e e A e Re e e e R e Re e e e A e Re e e e A eRe e b nesRean s nenannnananas 149
5-8. Order Filter Execution with Custom Filtersccocvvrvrrrrrvrcr e 151
o (0] 0 T 151
£ T0] 11110 o OSSR 151
HOW HEWOTKS......ceeeecercseecssec e se s s s sse s s s s se s ne s e e s e sse e s ae e san e nanssnsesasnesannsssnnsnsens 151
THE COUE.....ecreueerrrreeerersssesesesss e e e s e e s s ae e e s e e e e s s e ae e e s A e Re e e e s A e Re e e e R e Re e e A e Re e e e e nRe e e e nRnsn e e nansnnnnnes 152
5-9. Order Filter Execution Without Custom FIiRers.........ccouceeeriernisccnsc s 156
L] (0] 11T 156
LS T0] (o] 156
g (0 L] € O 156
LT o 3 156
5-10. Customize Error Detail POICY........cccoveeeeerseeirsisce s sns s e s e s e snssnnnnns 158
L0 (0] 11T PO 158
£ 10 110 o O 158
g (03 L o] €T 159
THE COUE.... ettt s et e s e e e R e Re e eE s A e Re e e s A e Re e e A e Re e e e A s Re e b e s Rean e e nnnnnnnnnes 160
5-11. Return HTML from ASP.NET Web APL..........oo et ses e s e s e sas e nns 161
o (0] 0 P 161
£ 1] 11110 o TSSO 161
HOW HEWOEKS......ceceeecercseecsiescse s se s s sse s e s e se e ne s e sae e s s e e san e nansessesssnessnnsssnnsnnnes 161
THE COUE.....ecreueerrrreeerersssesesesss e e e s e e s s ae e e s e e e e s s e ae e e s A e Re e e e s A e Re e e e R e Re e e A e Re e e e e nRe e e e nRnsn e e nansnnnnnes 161
5-12. Store Objects for the Duration of HTTP ReqUEST.........ccecvrerrerrerrerrerrer s ses e sennns 166
L0 (0] 11T N 166
£ T0] (o] 166
g (0 L] € O 166
LT o 3 168
Chapter 6: Embrace HTTP with ASP.NET Web API.........c.ccccimnnnnmmmmnnssssnnmssssssssmsssssssnnnns 171
6-1. Work Directly with HitpRequestMeSSage..........cccevrerrerrerrensensssses s s ssssssssssessssssssesssssssnnns 171
L] (0] 11T 171
LS T0] (o] 171

CONTENTS

HOW HEWOTKS. ...t 172
LI L TC N T 173
6-2. SUPPOIT Partial GETcccvoeeeerceriercerser et sa e sa s sa s sn e sa s sn s sn e sn s sn e sa e snennn 175
PrODIBIM ... 175
£ 0] (o] 175
g 0] € N 175
LI LT T 176
6-3. SUPPOIt the HEAD VEID ..ottt ss e e e sn s sn s sn e sn s snssnssn s snesnsnnns 178
0 10 0] [T 178
3101110 178
HOW HEWOIKS....cociiiiisisisisisisisis s 179
LT 0 N 180
6-4. SUpPort the PATCH VD ...ttt sn s sn e e 182
0 1001 3 182
SOIUTION. ...ttt 182
HOW HEWOTKS. ...t 182
LI L TC N 0T 183
6-5. Support Batching of HTTP REQUESTS........ccvcvvrrerrirrirer st se s ses e sne e 186
PrODIBIM ... 186
£ 0] (o] 186
g 0] € N 187
LI LT o 188
6-6. Automatic HTTP 406/Not Acceptable Server RESPONSESccccccevverreresierssessesessessesensens 189
0 10 0] [T 189
3101110 189
HOW HEWOIKS....cociiiiisisisisisisisis s 190
LT 0 190
6-7. Implement Versioning of a Web API with Centralized Routesccoccvvrrrsrcecercencencnnne 190
0 1001 3 190
SOIUTION. ...t 191

xvi

CONTENTS

g (0 L o] € T 191
LI L TC N 0T 191
6-8. Implement Versioning of a Web API with Attribute Routingccccverennvennsenennsessnsnnnens 197
o (10 0 P 197
£ 1] 11110 o PSPPSR 198
HOW HEWOTKS......ceeeecercreeesseese e se s s ae s se s s as s se s ne s s e s e sas e sae e sansssssssnssssnnsssnnsssnsnnens 198
THE COUE.....ecueueererreeererrssesese s e e e e s se e e s ss e e s e e e e s s e Re e e s A e Re e e e e A e Re e e e A e Re e e e e e Re e e s nRe e e nenRnsn e nenansnnnnnes 198
6-9. Use Custom HTTP CONEENt.........ccoeceieercreircrr e ss e s sas s e snenennens 201
L0 (0] T N 201
S0 (o] 201
g 0] € N 202
LT o 3 202
Chapter 7: Exceptions, Troubleshooting, and Documentingcccccuseemnmnsssnnnsmsssssnnnnnans 205
7-1. Handle Exceptions With Filterscccccvveirirninir s naeas 205
L0 (0] T N 205
S0 (o] 205
g 0] € N 206
LT o 3 206
7-2. Handle Exceptions GIODally..........ccceoereeeeececece e 207
L0 (0] 11T T 207
RS0 o 208
g (0 1 o] € T 208
LI LT 0T 209
7-3. Log Exceptions GIODallYccceeieienenienessnerssss s sssse s e sssssssssnssssssssnsens 210
o (] 0 T 210
£ T0] 11110 o TR STR TS R 210
HOW HEWOTKS..... e se s ae s s s s as s e e ne s s e s e sas e sse s san s nssssssssssnsssnnsssnsnnens 210
THE COUE.....ecreueerrrreeererssesesesss e e e se e s s e e e s ss e e s e e e e e s s s ae e e e A e Re e e e e A aRe e e e A e Re e e s e Re e e s nRase e nenansn e nenansnnnnnes 211
T o (o 1 L T P 213
L0 (0] T N 213
S0 (o] 213

CONTENTS

HOW HEWOTKS....cociiiiisininisisiisisisiniis ettt 214
LI LT 0T 214
7-5. Use an EXTernal TraACETcccoeeerrerserrernirses s se s e e e e e e snsnnns 215
PrODIBIM .. 215
£ 0] o] 215
g 0] € N 215
LI Tc X T 215
7-6. Call the Tracer ManUAIIYccoeeeverierrerrerrerserser s se s e se e e sa s saesn e sn e e snenns 216
0 103 [T 216
SOIUION. .ttt 216
HOW HEWOTKS....cociiiiisisisisisisisi i e 217
=T 0 N 217
7-7. Write @ Real-Time TracCer.........ccurmmrmriimninssi s s s 218
0 10 0] [o 218
RS0 o 218
HOW HEWOTKS....cociiiiiniiinisiinsisisisis ittt 219
THE COUR....eeetic bbb bbb bbb bbb bbb 219
7-8. Create a Documentation Page for ASP.NET Web API ... 223
PrODIBIM .. 223
£ 0] o] 223
g 0] € N 223
LI Tc N T 224
7-9. Add Custom Samples to ASP.NET Web API Help Page.........ccccvververrernersenser s sessessessessennnnns 225
0 103 [T 225
SOIUION. .ttt 225
HOW HEWOTKS. ... e 226
=T 0 N 226
7-10. Add Filters Information to ASP.NET Web API Help Pageccccoovererersecersercesces s 228
0 10 0] [o 228
SOIUTION. 1.ttt 228

xviii

CONTENTS

HOW HEWOTKS. ...t 229
LI L Tc N 0T 229
7-11. Support Data Annotations in ASP.NET Web API Help Pageccocvvvvrrerversnnensessersennnnne 231
PrODIBIM ... 231
£ 0] (o] 231
g 0] € N 231
LT o 232
Chapter 8: Cross Domain and Push Communicationcccccunemmmmnsssssnmmsssssssmsssssssnnnns 235
8-1. Use JSONP in ASP.NET WED APIocurereereriressssseressssssssessessssses e s s sssssssnsssssssssssssssnns 235
PrODIBIM ... 235
£ 0] (o] 235
g 0] € N 236
LT o 237
8-2. Use CORS in ASP.INET WED APcoeererreercresstse s ssesessesss e sssssssessessssessssssssssssessssnsens 239
0 103 [T 239
3101110 239
HOW HEWOTKS....cucniiiisisisisisisisisis it 239
LT 0 240
8-3. Create Custom CORS POIICIESccoriermrnenirsei s s 243
0 1001 o 243
SOIUTION. ...t 243
HOW HEWOTKS. ...t 243
LI L TC N 0T 244
8-4. Support Streaming and Push from ASP.NET Web APL..........ccooovrvrrrrrrrrerrer e sessenens 247
PrODIBIM ... 247
£ 0] (o] 248
g 0] € N 248
LT o 249
8-5. Support Server-Sent Events in ASPNET Web APL..........cooorvrvrvr e ses e sesnnns 251
0 103 [T 251
3101110 251

CONTENTS

g (0 L] € PO 251
THE COUE.... ettt a e s e e s e ae e e s A e Re e e e e A e Re e e e e R e Re e e A e Re e e e EeRe e b e s Rean s e nannnannnas 252
8-6. Integrate ASP.NET SignalR into ASP.NET Web API CONtrollersc.ccoeevvernnesesensessnnennens 255
o (4] < 0 T 255
£ 1] 11110 o TSSOSO 256
HOW HEWOTKS......ceceecerceecsie e se s s s sae s s as s e ne s ne s e sae e s ae e san e nssssnsessnnsssnnsssnnsnsnns 256
THE COUE.....ecueueererreeerersssesese s s e e s s e e s se e e s ae e se e s e e e e e s s s se e e e A e Re e e e A e Re e e e R e Re e e A e Re e e e nRese e nenRnsn e nenansnnnnnes 257
8-7. Use WebSockets With ASPNET WD APL..........coieeniereneriers e e e s s snssessesensens 263
L0 (0] 11T 263
LS T0] (o] 263
g (0 L] € 264
LT o 3 265
Chapter 9: Dependency Injection..........ccccurnssnmmmmmssssnnnmmssssssnssssssssnssssssnssssssssnsssssssannnnssns 269
9-1. Inject Dependencies into ASP.NET Web APl Controllersccccoeerierenesesnsessessnsessenensens 269
L0 (0] 11T 269
LS T0] (o] 269
g (0 L] € 269
LT o 3 270
9-2. Add Support for the Most Popular DI CONtaiNersccccveeeererrrsensesseesssses s ssssessessessnnns 272
L0 (0] 1T T 272
£ 10 10 o OO 272
g (03 L] €3PS 273
THE COUE......ceeeeeeeieeceri et s s s e s e s e A e Re e e s A e Re e e s R e Re e e A e Re e e e e e Re e b e s Rean e e nannnananas 273
9-3. Deal With ReqUEST SCOPE.......cvcrrerererrtr et sn s sn s n e 274
o (4] < 0 T 274
£ 1] 11110 o TSSOSO 274
HOW HEWOTKS......ceceecerceecsie e se s s s sae s s as s e ne s ne s e sae e s ae e san e nssssnsessnnsssnnsssnnsnsnns 274
THE COUE.....ecueueererreeerersssesese s s e e s s e e s se e e s ae e se e s e e e e e s s s se e e e A e Re e e e A e Re e e e R e Re e e A e Re e e e nRese e nenRnsn e nenansnnnnnes 275
9-4. DI with Other ASP.NET Web APl COMPONENTSccecevreererrerrenressersessessessessessessasssssassassassnnns 275
L0 (0] 11T 275
LS T0] (o] 276

XX

CONTENTS

HOW HEWOTKS. ...t 276
LI L Tc N 0T 276
9-5. Write @ CuStom DI AdAPLEr........ccccvvreerrirrer e sn s sn e sn s sn e sa e snenn 278
PrODIBIM ... 278
£ 0] (o] 278
g 0] € N 279
LT o 279
Chapter 10: Securing an ASP.NET Web APl S€rviCeccecsssrrrrssssssssssssnssssssssssssnnnnnnnnnss 283
10-1. Use Correct Web API Components for Security-Related Taskscccccveernserenerierenenes 283
PrODIBIM ... 283
£ 0] (o] 284
g 0] € N 284
LT o 286
10-2. Add HTTPS Support t0 ASP.NET WeDh API ... se e sns s 288
0 103 [T 288
3101110 288
HOW HEWOTKS....cucniiiisisisisisisisisis it 289
LT 0 290
10-3. Use Basic Authenticationccvninn s 292
0 1001 o 292
SOIUTION. ...t 292
HOW HEWOTKS. ...t 292
LI L TC N 0T 295
10-4. Integrate Windows AUthentiCationccoovceereeriennsesesnse s 296
PrODIBIM ... 296
£ 0] (o] 296
g 0] € N 297
LT o 299
10-5. Use the Hawk Authentication SCheme...........ccuriinnnn s 301
0 103 [T 301
3101110 301

CONTENTS

HOW HEWOTKS. ...t 301
LI L TC N T 302
10-6. Use OAuth 2.0 with ASPINET WEbh APL..........cooorrrercertrr et 303
PrODIBIM ... 303
£ 0] (o] 303
g 0] € N 304
LI LT T 306
10-7. Safely Access Current IPFINCIPAL.........ccccvververrerrensnser s sa s snsse e s 309
0 10 0] [T 309
3101110 310
HOW HEWOIKS....cociiiiisisisisisisisis s 310
LT 0 N 312
10-8. Remove ASP.NET Web API Server Footprintcccoovervrcrcscsss e 313
0 1001 3 313
SOIUTION. ...ttt 313
HOW HEWOTKS. ...t 313
LI L TC N 0T 314
Chapter 11: Testing Web APl ServiCes.....ccccuuemrmmmsssnnnmsssssssnssssssnsssssssssssssssssnsssssssansnssss 317
11-1. Unit Test ASP.NET Web APl CONtrOlIErs........c.ccverncnenninessesessese s 317
0 10 0] 1 o 317
SOIUTION. ...ttt 317
HOW HEWOTKS. ... 318
LI L TC N 0T 318
11-2. Unit Test MesSage HaNGIErS..........cccucceeerierensesennnesensesesessesss s ssesssse e e e sssssssessssesssssnnes 321
PrODIBIM ... 321
£ 0] (o] 321
g 0] € N 322
LI LT T 322
11-3. Unit Test Action FIErS ... 323
0 10 0] [T 323
3101110 323

xxii

CONTENTS

HOW HEWOTKS. ...t 324
LI L Tc N 0T 325
11-4. Unit TeSt FOrMAaErs........cccvieeiiresrcresn e sas e sne s 326
PrODIBIM ... 326
£ 0] (o] 326
g 0] € N 327
LT o 327
11-5. Simplify Tests with IHtpACtionReSULLcocvvrvrrrcrr e 331
0 103 [T 331
3101110 331
HOW TEWOIKS....cociiiiisisisisisisisis ittt 331
LT 0 332
11-6. TESE ROULES ...ttt 333
0 10 0] [o 333
SOIUTION. ...ttt 333
HOW HEWOTKS. ... 334
LI L TC N T 334
11-7. Integration TESTINGcceceeerrererseresrrere e a s snenr s nrn e nnas 338
PrODIBIM ... 338
£ 0] (o] 338
g 0 1 € N 338
LI LT o 339
11-8. Integration Testing With OWIN.........cccovvrrrrrrnrrrr e n e n s 343
0 103 [T 343
3101110 343
HOW HEWOIKS....cuciiiiisisisisisisisis st 343
LT 0 N 344
Chapter 12: 0Data.........ccvssmimmsmmmsmmssmismsssms s s s s s s s s s 347
12-1. Creating OData Services inWeh APl ... erernsrerrc e sne e 347
0 103 [T 347
3101110 347

CONTENTS

HOW HEWOTKS. ...t 348

LI L TC N T 349
12-2. Manage 0Data ROULEScccvverermrcrreninennsse e s e e sss e sne e s snsnnnes 352
PrODIBIM ... 352

£ 0] (o] 352

g 0] € N 353

LI LT T 355
12-3. Enable 0Data QUETIEScococeeururererere e 356
0 10 0] [T 356
3101110 356
HOW HEWOIKS....cociiiiisisisisisisisis s 357
LT 0 N 357
12-4. Support OData Functions and ACHiONSccvcrcrrrcscrrr s 360
0 1001 3 360
SOIUTION. ...ttt 360
HOW HEWOTKS. ...t 360

LI L TC N 0T 361
INA@X . eiiieirienriesssnsrsnn s s e s n s —————————————————— 365

XXiv

About the Author

Filip Wojcieszyn is a popular ASP.NET blogger (www.starthweb.com), a Microsoft ASP.NET MVP, a prolific open
source contributor, coordinator at the scriptcs project, and a member of the ASP.NET Web API advisory group.
He specializes in the ASP.NET web stack and modern web technologies. He is experienced in delivering robust
web solutions in a corporate context and has worked on projects in many corners of the world including Canada,
Switzerland, Finland, Poland, and Scotland.

You can follow Filip on Twitter @filip_woj.

XXV

www.starthweb.com
http:\\@filip_woj

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft technologies. He
works for Blu Arancio (www.bluarancio.com). He is a Microsoft Certified Solution Developer for .NET, a Microsoft
Certified Application Developer for .NET, a Microsoft Certified Professional, and a prolific author and technical
reviewer. Over the past ten years, he’s written articles for Italian and international magazines and coauthored more
than ten books on a variety of computer topics.

Xxvii

www.bluarancio.com

Acknowledgments

This book would never have been possible without Maja, the love of my life. Without her wonderful heart,
unbelievable support, and patience, I would never have managed to get anything done.

I'would especially like to thank Jon Galloway, Henrik Frystyk Nielsen, and Dan Roth. Without Jon'’s support,
and the nudge he gave me, I would not be where I am right now with my career, and for that I will always be grateful.
Henrik, one of the fathers of HTTP and a true legend in the industry, has always supported my community activities
and was always available and ready to share his tremendous knowledge. Dan has made sure that the Web API team
is one of the most open and discussion-oriented teams in all of Microsoft. A number of current and past members of
the ASP.NET team have also been very helpful to me, and I would like to thank them all: Yishai Galatzer, Kiran Challa,
Brad Wilson, Youssef Moussaoui, and many others—even David Fowler with his crazy ideas!

A big thank you goes to my scriptcs friends, spearheaded by Glenn Block, who has been urging me to write this
book since the early days and without whom the ASP.NET Web API framework would not exist in the first place, and
Justin Rusbatch.

There are many amazing individuals in the ASP.NET Web API community who have been both inspirational and
extremely supportive of me over the past couple of years: Pedro Felix, Ryan Riley, Brock Allen, Dominick Baier, Darrel
Miller, Pablo Cibraro, Tugberk Ugurlu, and Ali Kheyrollahi, to name just a few. They are not only fantastic experts in
the Web API area, but more importantly, they are terrific people who I am honored to be able to call friends.

I'would also like to thank my friends at Climax Media, who gave me a chance and believed in me like no other
company ever did. It’s truly a great place to work.

Obviously this book would never have happened without the great support from Apress and my editors, Gwenan
and Christine, who have been fantastic throughout the entire process.

Last but not least, a thank you to my family and to my best friend, Michal Mytnik, for putting up with me whining,
complaining, and constantly moving from place to place for many years, which I can imagine has been a herculean task.

XXix

	ASP.NET Web API 2
Recipes
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Web API in ASP.NET
	1-1. Add ASP.NET Web API to an MVC Application
	Problem
	Solution
	How It Works
	The Code

	1-2. Add ASP.NET Web API to a Web Forms Application
	Problem
	Solution
	How It Works
	The Code

	1-3. Accept an HTML Form
	Problem
	Solution
	How It Works
	The Code

	1-4. Link from MVC Controller to API Controller and Vice Versa
	Problem
	Solution
	How It Works
	The Code

	1-5. Use Scaffolding with ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	1-6. Add Model Validation
	Problem
	Solution
	How It Works
	The Code

	1-7. Use CSRF Protection
	Problem
	Solution
	How It Works
	The Code

	1-8. Add Support for Session State
	Problem
	Solution
	How It Works
	The Code

	Chapter 2: ASP.NET Web API Outside of IIS
	2-1. Self-Host ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	2-2. Host ASP.NET Web API with OWIN
	Problem
	Solution
	How It Works
	The Code

	2-3. Host ASP.NET Web API in Azure Mobile Services
	Problem
	Solution
	How It Works
	The Code

	2-4. Quick Prototypes with scriptcs
	Problem
	Solution
	How It Works
	The Code

	2-5. Host ASP.NET Web API in Azure Worker Role
	Problem
	Solution
	How It Works
	The Code

	2-6. Use ASP.NET Web API with F#
	Problem
	Solution
	How It Works
	The Code

	Chapter 3: Routing
	3-1. Define Centralized Routes
	Problem
	Solution
	How It Works
	The Code

	3-2. Define Direct Routes
	Problem
	Solution
	How It Works
	The Code

	3-3. Set Default Route Values
	Problem
	Solution
	How It Works
	The Code

	3-4. Set Optional Route Values
	Problem
	Solution
	How It Works
	The Code

	3-5. Set Route Constraints
	Problem
	Solution
	How It Works
	The Code

	3-6. Define Remote Procedure Call Style Routes
	Problem
	Solution
	How It Works
	The Code

	3-7. Create Catch-all Routes
	Problem
	Solution
	How It Works
	The Code

	3-8. Prevent Controller Methods from Inadvertently Becoming Web API Endpoints
	Problem
	Solution
	How It Works
	Solution

	3-9. Configure Route-Specific Message Handlers
	Problem
	Solution
	How It Works
	The Code

	3-10. Ignore Routes
	Problem
	Solution
	How It Works
	The Code

	3-11. Localize Routes
	Problem
	Solution
	How It Works
	The Code

	3-12. Generate a Link to the Route
	Problem
	Solution
	How It Works
	The Code

	Chapter 4: Content Negotiation and Media Types
	4-1. Request a Specific Media Type from ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	4-2. Support Additional Media Types
	Problem
	Solution
	How It Works
	The Code

	4-3. Control Model Binding From URI and Body
	Problem
	Solution
	How It Works
	The Code
	FromUri and FromBody
	TypeConverters
	ModelBinders

	4-4. ASP.NET MVC-style Parameter Bindingin ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	4-5. Customize XML and JSON Responses
	Problem
	Solution
	How It Works
	The Code
	JSON
	XML

	4-6. Write Your Own MediaTypeFormatter
	Problem
	Solution
	How It Works
	The Code

	4-7. Run Content Negotiation Manually
	Problem
	Solution
	How It Works
	The Code

	4-8. Bypass Content Negotiation
	Problem
	Solution
	How It Works
	The Code

	4-9. Control Media Types with MediaTypeMappings
	Problem
	Solution
	How It Works
	The Code

	4-10. Serve Binary Data from ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code
	StreamContent
	ByteArrayContent
	MultipartContent
	PushStreamContent

	4-11. Accept File Uploads
	Problem
	Solution
	How It Works
	The Code
	Upload To Disk
	Upload To Memory

	4-12 Enable Bufferless Uploads
	Problem
	Solution
	How It Works
	The Code
	Web Host
	Self Host
	OWIN Host

	4-13 Validate File Uploads
	Problem
	Solution
	How It Works
	The Code

	Chapter 5: Configuration and Customization
	5-1. Throttle ASP.NET Web API Calls
	Problem
	Solution
	How It Works
	The Code

	5-2. Use Controllers from an External Assembly
	Problem
	Solution
	How It Works
	The Code

	5-3. Use Controller-Scoped Configuration
	Problem
	Solution
	How It Works
	The Code

	5-4. Validate Input with Action Filters
	Problem
	Solution
	How It Works
	The Code
	Validate Model State
	Guarding Against Null

	5-5. Override Filters
	Problem
	Solution
	How It Works
	The Code

	5-6. Add Caching to ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	5-7. Use an Existing Caching Library
	Problem
	Solution
	How It Works
	The Code

	5-8. Order Filter Execution with Custom Filters
	Problem
	Solution
	How It Works
	The Code

	5-9. Order Filter Execution Without Custom Filters
	Problem
	Solution
	How It Works
	The Code

	5-10. Customize Error Detail Policy
	Problem
	Solution
	How It Works
	The Code

	5-11. Return HTML from ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code
	Static Files
	HTML via MediaTypeFormater
	HTML via IHttpActionResult

	5-12. Store Objects for the Duration of HTTP Request
	Problem
	Solution
	How It Works
	The Code

	Chapter 6: Embrace HTTP with ASP.NET Web API
	6-1. Work Directly with HttpRequestMessage
	Problem
	Solution
	How It Works
	The Code

	6-2. Support Partial GET
	Problem
	Solution
	How It Works
	The Code

	6-3. Support the HEAD Verb
	Problem
	Solution
	How It Works
	The Code

	6-4. Support the PATCH Verb
	Problem
	Solution
	How It Works
	The Code
	Manual Updates
	Using Delta<T>
	Using Reflection

	6-5. Support Batching of HTTP Requests
	Problem
	Solution
	How It Works
	The Code

	6-6. Automatic HTTP 406/Not Acceptable Server Responses
	Problem
	Solution
	How It Works
	The Code

	6-7. Implement Versioning of a Web API with Centralized Routes
	Problem
	Solution
	How It Works
	The Code
	URI-Based Versioning
	Header-Based Versioning
	Media Type-Based Versioning

	6-8. Implement Versioning of a Web API with Attribute Routing
	Problem
	Solution
	How It Works
	The Code
	URI-Based Versioning
	Header-Based and Media Type-Based Versioning

	6-9. Use Custom HTTP Content
	Problem
	Solution
	How It Works
	The Code

	Chapter 7: Exceptions, Troubleshooting, and Documenting
	7-1. Handle Exceptions with Filters
	Problem
	Solution
	How It Works
	The Code

	7-2. Handle Exceptions Globally
	Problem
	Solution
	How It Works
	The Code

	7-3. Log Exceptions Globally
	Problem
	Solution
	How It Works
	The Code

	7-4. Add a Tracer
	Problem
	Solution
	How It Works
	The Code

	7-5. Use an External Tracer
	Problem
	Solution
	How It Works
	The Code

	7-6. Call the Tracer Manually
	Problem
	Solution
	How It Works
	The Code

	7-7. Write a Real-Time Tracer
	Problem
	Solution
	How It Works
	The Code

	7-8. Create a Documentation Page for ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	7-9. Add Custom Samples to ASP.NET Web API Help Page
	Problem
	Solution
	How It Works
	The Code

	7-10. Add Filters Information to ASP.NET Web API Help Page
	Problem
	Solution
	How It Works
	The Code

	7-11. Support Data Annotations in ASP.NET Web API Help Page
	Problem
	Solution
	How It Works
	The Code

	Chapter 8: Cross Domain and Push Communication
	8-1. Use JSONP in ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	8-2. Use CORS in ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	8-3. Create Custom CORS Policies
	Problem
	Solution
	How It Works
	The Code

	8-4. Support Streaming and Push from ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	8-5. Support Server-Sent Events in ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	8-6. Integrate ASP.NET SignalR into ASP.NET Web API controllers
	Problem
	Solution
	How It Works
	The Code

	8-7. Use WebSockets with ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	Chapter 9: Dependency Injection
	9-1. Inject Dependencies into ASP.NET Web API Controllers
	Problem
	Solution
	How It Works
	The Code

	9-2. Add Support for the Most Popular DI Containers
	Problem
	Solution
	How It Works
	The Code

	9-3. Deal with Request Scope
	Problem
	Solution
	How It Works
	The Code

	9-4. DI with Other ASP.NET Web API Components
	Problem
	Solution
	How It Works
	The Code
	Filters
	Message Handlers
	Formatters

	9-5. Write a Custom DI Adapter
	Problem
	Solution
	How It Works
	The Code

	Chapter 10: Securing an ASP.NET Web API Service
	10-1. Use Correct Web API Components for Security-Related Tasks
	Problem
	Solution
	How It Works
	The Code

	10-2. Add HTTPS Support to ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	10-3. Use Basic Authentication
	Problem
	Solution
	How It Works
	The Code

	10-4. Integrate Windows Authentication
	Problem
	Solution
	How It Works
	The Code

	10-5. Use the Hawk Authentication Scheme
	Problem
	Solution
	How It Works
	The Code

	10-6. Use OAuth 2.0 with ASP.NET Web API
	Problem
	Solution
	How It Works
	The Code

	10-7. Safely Access Current IPrincipal
	Problem
	Solution
	How It Works
	The Code

	10-8. Remove ASP.NET Web API Server Footprint
	Problem
	Solution
	How It Works
	The Code
	Server
	X-Powered-By
	X-AspNet-Version
	All Headers Through IHttpModule

	Chapter 11: Testing Web API Services
	11-1. Unit Test ASP.NET Web API Controllers
	Problem
	Solution
	How It Works
	The Code

	11-2. Unit Test Message Handlers
	Problem
	Solution
	How It Works
	The Code

	11-3. Unit Test Action Filters
	Problem
	Solution
	How It Works
	The Code

	11-4. Unit Test Formatters
	Problem
	Solution
	How It Works
	The Code
	Testing Using ObjectContent<T>
	Traditional Unit Testing

	11-5. Simplify Tests with IHttpActionResult
	Problem
	Solution
	How It Works
	The Code

	11-6. Test Routes
	Problem
	Solution
	How It Works
	The Code

	11-7. Integration Testing
	Problem
	Solution
	How It Works
	The Code

	11-8. Integration Testing with OWIN
	Problem
	Solution
	How It Works
	The Code

	Chapter 12: OData
	12-1. Creating OData Services in Web API
	Problem
	Solution
	How It Works
	The Code

	12-2. Manage OData Routes
	Problem
	Solution
	How It Works
	The Code

	12-3. Enable OData Queries
	Problem
	Solution
	How It Works
	The Code

	12-4. Support OData Functions and Actions
	Problem
	Solution
	How It Works
	The Code

	Index

